Mechanical crease in 2D materials—A platform for large spin splitting and persistent spin helix

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-09-03 DOI:10.1016/j.matt.2025.102378
Sunny Gupta , Manoj N. Mattur , Boris I. Yakobson
{"title":"Mechanical crease in 2D materials—A platform for large spin splitting and persistent spin helix","authors":"Sunny Gupta ,&nbsp;Manoj N. Mattur ,&nbsp;Boris I. Yakobson","doi":"10.1016/j.matt.2025.102378","DOIUrl":null,"url":null,"abstract":"<div><div>Spin-based information processing promises energy-efficient next-generation electronics, crucial amid the growing energy demands of artificial intelligence. Materials with large spin-split electronic states with exotic persistent spin helix (PSH) texture are critical for such devices; however, only a few materials in nature meet the strict symmetry requirements for PSH texture, limiting material options. We report the striking phenomenon that mechanical crease, unique to 2D materials, enables spin splitting and PSH texture by inducing flexoelectric polarization and asymmetric hybridization. Using first-principles calculations and analytical models, we demonstrate this effect in various 2D materials and reveal two critical features, curvature-induced band shifts and flexoelectricity-driven spin splitting, which are essential to create PSH texture. Notably, bent 2D MoTe<sub>2</sub> exhibits high spin splitting of ∼0.16 eV and an attractively small spin precession length of ∼1 nm, the best known. This work reveals a fundamental design framework to create elusive PSH states in 2D materials, opening exciting avenues for spin-based electronic devices.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 9","pages":"Article 102378"},"PeriodicalIF":17.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525004217","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-based information processing promises energy-efficient next-generation electronics, crucial amid the growing energy demands of artificial intelligence. Materials with large spin-split electronic states with exotic persistent spin helix (PSH) texture are critical for such devices; however, only a few materials in nature meet the strict symmetry requirements for PSH texture, limiting material options. We report the striking phenomenon that mechanical crease, unique to 2D materials, enables spin splitting and PSH texture by inducing flexoelectric polarization and asymmetric hybridization. Using first-principles calculations and analytical models, we demonstrate this effect in various 2D materials and reveal two critical features, curvature-induced band shifts and flexoelectricity-driven spin splitting, which are essential to create PSH texture. Notably, bent 2D MoTe2 exhibits high spin splitting of ∼0.16 eV and an attractively small spin precession length of ∼1 nm, the best known. This work reveals a fundamental design framework to create elusive PSH states in 2D materials, opening exciting avenues for spin-based electronic devices.

Abstract Image

二维材料中的机械折痕——大自旋分裂和持续自旋螺旋的平台
基于旋转的信息处理有望实现节能的下一代电子产品,这在人工智能日益增长的能源需求中至关重要。具有大自旋分裂电子态且具有特殊持续自旋螺旋(PSH)织构的材料对于此类器件至关重要;然而,自然界中只有少数材料符合PSH纹理的严格对称要求,这限制了材料的选择。我们报告了一种引人注目的现象,即二维材料特有的机械折痕通过诱导挠曲电极化和不对称杂化来实现自旋分裂和PSH织构。利用第一性原理计算和分析模型,我们在各种二维材料中证明了这种效应,并揭示了两个关键特征,曲率诱导的带位移和柔性电驱动的自旋分裂,这是创建PSH纹理所必需的。值得注意的是,弯曲的2D MoTe2具有高自旋分裂(~ 0.16 eV)和引人注目的小自旋进动长度(~ 1 nm),这是最著名的。这项工作揭示了一个基本的设计框架,在二维材料中创建难以捉摸的PSH状态,为基于自旋的电子设备开辟了令人兴奋的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信