A hybrid physics-machine learning model to predict density of mixtures of CO2 with impurities

IF 5.5 0 ENERGY & FUELS
Mohamad Hussein Makke, Kassem Ghorayeb
{"title":"A hybrid physics-machine learning model to predict density of mixtures of CO2 with impurities","authors":"Mohamad Hussein Makke,&nbsp;Kassem Ghorayeb","doi":"10.1016/j.jgsce.2025.205768","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon Capture, Utilization, and Storage (CCUS) plays a pivotal role in reducing greenhouse gas emissions, essential for limiting global warming to below 1.5 °C by 2100 and achieving carbon neutrality by 2050. Modeling carbon dioxide (CO<sub>2</sub>) density is crucial for optimizing CO<sub>2</sub> transportation and storage systems. However, captured CO<sub>2</sub> streams from power sources often contain impurities such as Oxygen, Nitrogen, Carbon Monoxide, Argon, Sulfur Dioxide, Hydrogen, Methane, Water, and Hydrogen Sulfide. These impurities significantly impact transmission properties and challenge the predictive capabilities of equations of state (EoSs) thermodynamic models.</div><div>This study investigates the effects of impurities on CO<sub>2</sub> stream density using a comprehensive dataset of 134,204 density data points. Fourteen EoSs, including cubic, virial, physical, and multi-parameter equations, were evaluated to determine optimal modeling conditions. Moreover, machine learning models trained with experimental and synthetic data from equation of state (EoS) models were employed towards a high predictive capability model. This synthetic data was generated, within CCUS pipeline operating conditions, using the best-performing EoSs, primarily multiparameter equations with an Absolute Average Relative Deviation &lt;3 %. Random Forest and Artificial Neural Networks provided robust density predictions, even in complex thermodynamic regions with a Coefficient of Determination &gt;0.96.</div><div>This hybrid approach offers a novel pathway for improving density predictions of CO<sub>2</sub>-rich systems, supporting more efficient and reliable transportation models. To the best of our knowledge, no previous study considered such a comprehensive dataset and EoSs for predicting the density of CO<sub>2</sub> rich mixtures using this hybrid approach.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"144 ","pages":"Article 205768"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon Capture, Utilization, and Storage (CCUS) plays a pivotal role in reducing greenhouse gas emissions, essential for limiting global warming to below 1.5 °C by 2100 and achieving carbon neutrality by 2050. Modeling carbon dioxide (CO2) density is crucial for optimizing CO2 transportation and storage systems. However, captured CO2 streams from power sources often contain impurities such as Oxygen, Nitrogen, Carbon Monoxide, Argon, Sulfur Dioxide, Hydrogen, Methane, Water, and Hydrogen Sulfide. These impurities significantly impact transmission properties and challenge the predictive capabilities of equations of state (EoSs) thermodynamic models.
This study investigates the effects of impurities on CO2 stream density using a comprehensive dataset of 134,204 density data points. Fourteen EoSs, including cubic, virial, physical, and multi-parameter equations, were evaluated to determine optimal modeling conditions. Moreover, machine learning models trained with experimental and synthetic data from equation of state (EoS) models were employed towards a high predictive capability model. This synthetic data was generated, within CCUS pipeline operating conditions, using the best-performing EoSs, primarily multiparameter equations with an Absolute Average Relative Deviation <3 %. Random Forest and Artificial Neural Networks provided robust density predictions, even in complex thermodynamic regions with a Coefficient of Determination >0.96.
This hybrid approach offers a novel pathway for improving density predictions of CO2-rich systems, supporting more efficient and reliable transportation models. To the best of our knowledge, no previous study considered such a comprehensive dataset and EoSs for predicting the density of CO2 rich mixtures using this hybrid approach.
一个混合物理-机器学习模型来预测二氧化碳与杂质混合物的密度
碳捕集、利用与封存(CCUS)在减少温室气体排放方面发挥着关键作用,对于到2100年将全球变暖控制在1.5°C以下和到2050年实现碳中和至关重要。模拟二氧化碳(CO2)密度对于优化二氧化碳运输和储存系统至关重要。然而,从电源捕获的二氧化碳流通常含有杂质,如氧、氮、一氧化碳、氩、二氧化硫、氢、甲烷、水和硫化氢。这些杂质严重影响了传输特性,并挑战了状态方程(eos)热力学模型的预测能力。本研究利用134,204个密度数据点的综合数据集调查了杂质对CO2流密度的影响。评估了14个eos,包括三次方程、虚函数方程、物理方程和多参数方程,以确定最佳建模条件。此外,利用状态方程(EoS)模型的实验数据和合成数据训练的机器学习模型,建立了具有高预测能力的模型。这些合成数据是在CCUS管道运行条件下,使用性能最好的eos生成的,主要是具有绝对平均相对偏差<; 3%的多参数方程。随机森林和人工神经网络提供了稳健的密度预测,即使在复杂的热力学区域,其决定系数为0.96。这种混合方法为改善富含二氧化碳的系统的密度预测提供了一种新的途径,支持更有效和可靠的运输模型。据我们所知,以前没有研究考虑过如此全面的数据集和eos来使用这种混合方法预测富含二氧化碳的混合物的密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信