Andaç Özsoy , Steve Gaudez , William A. Hearn , Antonios Baganis , Zoltán Hegedüs , Yunhui Chen , Alexander Rack , Roland E. Logé , Steven Van Petegem
{"title":"Phase-separation-driven cracking in additive manufacturing of Ni-Cu alloy systems","authors":"Andaç Özsoy , Steve Gaudez , William A. Hearn , Antonios Baganis , Zoltán Hegedüs , Yunhui Chen , Alexander Rack , Roland E. Logé , Steven Van Petegem","doi":"10.1016/j.addma.2025.104950","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the cracking mechanism in additive manufacturing of Ni-Cu multi-material combinations using <em>operando</em> X-ray diffraction and imaging experiments during laser powder-bed fusion (L-PBF) of CuCrZr and IN625. It is shown that liquid immiscibility between the two alloy systems stems from the interaction between Cu and the alloying elements in IN625, causing both Cu-rich and Ni-rich liquids to form with different freezing ranges. Consequently, solidification cracking takes place due to the large solidification range where the Ni-rich solid and Cu-rich liquid co-exist. Guided by thermodynamic calculations, it was identified that the highest crack susceptibility occurs between 20 and 40 wt% CuCrZr-IN625, which was further validated by printing mixtures of the two alloys in different ratios. <em>Operando</em> X-ray imaging and scanning electron microscopy characterization revealed that the cracking occurred during the terminal stage of solidification. It was observed that the columnar grains of the Ni-rich primary solid separate into cracks, where Cu-rich liquid regions persist over a wide temperature range as the solidification of these regions begin significantly later. It was concluded that the mechanism of cracking explained in this study could be extended to other Cu-Ni alloy combinations containing elements that induce immiscibility when mixed with Cu during fusion-based processing methods.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"110 ","pages":"Article 104950"},"PeriodicalIF":11.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425003148","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the cracking mechanism in additive manufacturing of Ni-Cu multi-material combinations using operando X-ray diffraction and imaging experiments during laser powder-bed fusion (L-PBF) of CuCrZr and IN625. It is shown that liquid immiscibility between the two alloy systems stems from the interaction between Cu and the alloying elements in IN625, causing both Cu-rich and Ni-rich liquids to form with different freezing ranges. Consequently, solidification cracking takes place due to the large solidification range where the Ni-rich solid and Cu-rich liquid co-exist. Guided by thermodynamic calculations, it was identified that the highest crack susceptibility occurs between 20 and 40 wt% CuCrZr-IN625, which was further validated by printing mixtures of the two alloys in different ratios. Operando X-ray imaging and scanning electron microscopy characterization revealed that the cracking occurred during the terminal stage of solidification. It was observed that the columnar grains of the Ni-rich primary solid separate into cracks, where Cu-rich liquid regions persist over a wide temperature range as the solidification of these regions begin significantly later. It was concluded that the mechanism of cracking explained in this study could be extended to other Cu-Ni alloy combinations containing elements that induce immiscibility when mixed with Cu during fusion-based processing methods.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.