Mechanochemical effect assisted oxidative whitening of black talc

IF 5.8 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Huan Shuai , Xianrong Yang , Xi Xu , Gaoxiang Du , Jiao Wang
{"title":"Mechanochemical effect assisted oxidative whitening of black talc","authors":"Huan Shuai ,&nbsp;Xianrong Yang ,&nbsp;Xi Xu ,&nbsp;Gaoxiang Du ,&nbsp;Jiao Wang","doi":"10.1016/j.clay.2025.107961","DOIUrl":null,"url":null,"abstract":"<div><div>Black talc, a carbon-intercalated phyllosilicate mineral, is significantly limited in industrial applications due to its intrinsic low whiteness. Conventional whitening methods relying on high-temperature calcination inevitably compromise its layered crystalline structure through thermal decomposition. This study presents a mechanochemically assisted oxidative strategy that achieves effective whitening while preserving structural integrity. By combining mechanical exfoliation with oxidative activation, the interlayer graphite carbon domains in black talc were selectively oxidized, thus significantly increasing the whiteness. Compared with mechanical treatment alone (whiteness 25.7) or chemical treatment alone (whiteness 52.4), the synergistic coupling of mechanical activation and oxidant (whiteness 75.7) increased the whitening efficiency by 626 % and 299 %, respectively. Systematic characterization via X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed a synergistic mechanism: (i) mechanical delamination exposing encapsulated carbon layers and (ii) surface activation promoting oxidative radical generation for carbon removal. Notably, the layered framework remained intact post-treatment, as evidenced by maintained interlayer spacing and absence of phase transformation, contrasting sharply with the structural collapse observed in calcination-based approaches. Although current exploration focuses on carbonaceous minerals, this mechanochemical paradigm establishes a versatile platform for high-value utilization of heat-sensitive mineral resources, particularly in applications demanding structural preservation, such as functional composites and precision ceramics manufacturing.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"277 ","pages":"Article 107961"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725002662","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Black talc, a carbon-intercalated phyllosilicate mineral, is significantly limited in industrial applications due to its intrinsic low whiteness. Conventional whitening methods relying on high-temperature calcination inevitably compromise its layered crystalline structure through thermal decomposition. This study presents a mechanochemically assisted oxidative strategy that achieves effective whitening while preserving structural integrity. By combining mechanical exfoliation with oxidative activation, the interlayer graphite carbon domains in black talc were selectively oxidized, thus significantly increasing the whiteness. Compared with mechanical treatment alone (whiteness 25.7) or chemical treatment alone (whiteness 52.4), the synergistic coupling of mechanical activation and oxidant (whiteness 75.7) increased the whitening efficiency by 626 % and 299 %, respectively. Systematic characterization via X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed a synergistic mechanism: (i) mechanical delamination exposing encapsulated carbon layers and (ii) surface activation promoting oxidative radical generation for carbon removal. Notably, the layered framework remained intact post-treatment, as evidenced by maintained interlayer spacing and absence of phase transformation, contrasting sharply with the structural collapse observed in calcination-based approaches. Although current exploration focuses on carbonaceous minerals, this mechanochemical paradigm establishes a versatile platform for high-value utilization of heat-sensitive mineral resources, particularly in applications demanding structural preservation, such as functional composites and precision ceramics manufacturing.
机械化学效应辅助黑滑石氧化增白
黑滑石是一种碳插层层状硅酸盐矿物,由于其固有的低白度,在工业应用中受到很大限制。传统的依靠高温煅烧的增白方法不可避免地会因热分解而破坏其层状晶体结构。本研究提出了一种机械化学辅助氧化策略,在保持结构完整性的同时实现有效的美白。通过机械剥离和氧化活化相结合的方法,对黑色滑石层间石墨碳畴进行了选择性氧化,从而显著提高了白度。与机械单独处理(白度25.7)或化学单独处理(白度52.4)相比,机械活化与氧化剂协同耦合(白度75.7)的增白效率分别提高了626%和299%。通过x射线光电子能谱(XPS)和热重分析(TGA)的系统表征揭示了协同机制:(i)机械分层暴露包裹的碳层;(ii)表面活化促进氧化自由基生成以去除碳。值得注意的是,层状框架在处理后保持完整,层间间距保持不变,没有发生相变,这与基于煅烧的方法观察到的结构崩塌形成鲜明对比。虽然目前的勘探主要集中在碳质矿物上,但这种机械化学模式为热敏性矿产资源的高价值利用建立了一个多功能平台,特别是在要求结构保存的应用中,如功能复合材料和精密陶瓷制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信