On a fractional boundary version of Talenti’s inequality in the unit ball

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Yassin El Karrouchi, Tobias Weth
{"title":"On a fractional boundary version of Talenti’s inequality in the unit ball","authors":"Yassin El Karrouchi,&nbsp;Tobias Weth","doi":"10.1016/j.nonrwa.2025.104482","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by recent work of Ferone and Volzone (2021), we derive sufficient conditions for the validity and non-validity of a boundary version of Talenti’s comparison principle in the context of Dirichlet–Poisson problems for the fractional Laplacian <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> in the unit ball <span><math><mrow><mi>Ω</mi><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In particular, our results imply a universal failure of the classical pointwise Talenti inequality in the fractional radial context. In contrast, a boundary Talenti type inequality holds for radial functions in the higher order case <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104482"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001683","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by recent work of Ferone and Volzone (2021), we derive sufficient conditions for the validity and non-validity of a boundary version of Talenti’s comparison principle in the context of Dirichlet–Poisson problems for the fractional Laplacian (Δ)s in the unit ball Ω=B1(0)RN, s(0,1). In particular, our results imply a universal failure of the classical pointwise Talenti inequality in the fractional radial context. In contrast, a boundary Talenti type inequality holds for radial functions in the higher order case s>1.
单位球中Talenti不等式的分数边界形式
受Ferone和Volzone(2021)最近工作的启发,我们在Dirichlet-Poisson问题的背景下,为单位球Ω=B1(0)∧RN, s∈(0,1)中的分数阶拉普拉斯算子(−Δ)s导出了Talenti比较原理的边界版本的有效性和非有效性的充分条件。特别地,我们的结果暗示了经典的点向Talenti不等式在分数径向环境中的普遍失效。相反,在高阶情况下径向函数的边界Talenti型不等式成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信