{"title":"On a fractional boundary version of Talenti’s inequality in the unit ball","authors":"Yassin El Karrouchi, Tobias Weth","doi":"10.1016/j.nonrwa.2025.104482","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by recent work of Ferone and Volzone (2021), we derive sufficient conditions for the validity and non-validity of a boundary version of Talenti’s comparison principle in the context of Dirichlet–Poisson problems for the fractional Laplacian <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> in the unit ball <span><math><mrow><mi>Ω</mi><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In particular, our results imply a universal failure of the classical pointwise Talenti inequality in the fractional radial context. In contrast, a boundary Talenti type inequality holds for radial functions in the higher order case <span><math><mrow><mi>s</mi><mo>></mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104482"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001683","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by recent work of Ferone and Volzone (2021), we derive sufficient conditions for the validity and non-validity of a boundary version of Talenti’s comparison principle in the context of Dirichlet–Poisson problems for the fractional Laplacian in the unit ball , . In particular, our results imply a universal failure of the classical pointwise Talenti inequality in the fractional radial context. In contrast, a boundary Talenti type inequality holds for radial functions in the higher order case .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.