Integrability and periodic orbits of a 3D jerk system with two quadratic nonlinearities

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Martha Alvarez-Ramírez , Johanna D. García-Saldaña , Jaume Llibre
{"title":"Integrability and periodic orbits of a 3D jerk system with two quadratic nonlinearities","authors":"Martha Alvarez-Ramírez ,&nbsp;Johanna D. García-Saldaña ,&nbsp;Jaume Llibre","doi":"10.1016/j.nonrwa.2025.104491","DOIUrl":null,"url":null,"abstract":"<div><div>In mechanics jerk is the rate of change of an object’s acceleration over time. Thus a jerk equation is a differential equation of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>⃛</mo></mrow></mover><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>,</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̈</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>x</mi></math></span>, <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover></math></span>, <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̈</mo></mrow></mover></math></span> and <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>⃛</mo></mrow></mover></math></span> represent the position, velocity, acceleration, and jerk, respectively. The jerk differential equation can be written as the jerk differential system <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>y</mi><mo>,</mo><mspace></mspace><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>z</mi><mo>,</mo><mspace></mspace><mover><mrow><mi>z</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. In this paper we study the jerk differential system with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mi>a</mi><mi>x</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>y</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, previously studied by other authors showing that this system can exhibit chaos for some values of its parameters. When the parameters <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span> the <span><math><mi>x</mi></math></span>-axis is filled with zero-Hopf equilibria, and all the other orbits are periodic. Here we prove analytically the existence of two families of periodic orbits for sufficiently small values of the parameters <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>. One family bifurcates from the non-isolated zero-Hopf equilibrium <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> of the jerk system with <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span>, while the other family bifurcates from a periodic orbit of the jerk system with <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104491"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001774","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In mechanics jerk is the rate of change of an object’s acceleration over time. Thus a jerk equation is a differential equation of the form x=f(x,ẋ,ẍ), where x, ẋ, ẍ and x represent the position, velocity, acceleration, and jerk, respectively. The jerk differential equation can be written as the jerk differential system ẋ=y,ẏ=z,ż=f(x,y,z), in R3. In this paper we study the jerk differential system with f(x,y,z)=ax(1x)y+by2, previously studied by other authors showing that this system can exhibit chaos for some values of its parameters. When the parameters a=b=0 the x-axis is filled with zero-Hopf equilibria, and all the other orbits are periodic. Here we prove analytically the existence of two families of periodic orbits for sufficiently small values of the parameters a and b. One family bifurcates from the non-isolated zero-Hopf equilibrium (1,0,0) of the jerk system with a=b=0, while the other family bifurcates from a periodic orbit of the jerk system with a=b=0.
二维二次非线性系统的可积性与周期轨道
在力学中,加速度是物体加速度随时间变化的速率。因此,加速度方程是形式为x±±=f(x, ,)的微分方程,其中x、、和x±分别表示位置、速度、加速度和加速度。激振微分方程可以写成激振微分系统 =y, =z, z =f(x,y,z),在R3中。本文研究了f(x,y,z)= - ax(1 - x) - y+by2的跳变微分系统,前人的研究表明该系统在其参数的某些值下可以表现为混沌。当参数a=b=0时,x轴充满0 - hopf平衡点,其他轨道都是周期性的。本文对参数a和b的足够小的值,解析地证明了两族周期轨道的存在性。一类是从a=b=0时的激振系统的非孤立0 - hopf平衡点(1,0,0)分叉,另一类是从a=b=0时的激振系统的周期轨道分叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信