A framework to evaluate the calorific efficiency of hardwoods based on DEA and AHP methods

Hilal Singer
{"title":"A framework to evaluate the calorific efficiency of hardwoods based on DEA and AHP methods","authors":"Hilal Singer","doi":"10.1016/j.asems.2025.100152","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a two-phase decision-making framework to evaluate the calorific efficiencies of wood and bark samples obtained from the trunks and branches of fifteen hardwood tree species. The proposed framework integrates the data envelopment analysis (DEA) with the analytic hierarchy process (AHP). The DEA method is used to perform pairwise comparisons of the wood and bark samples. Ash content, volatile matter content, and fixed carbon content are selected as inputs, while the calorific value is used as the output. The results from the DEA analysis are analyzed using the AHP method to determine precise efficiency ranking indexes. The ranking order of the trunk wood samples is determined as follows: beech, oak, eucalyptus, hophornbeam, hazelnut, poplar, alder, maple, rhododendron, elm, ash, hornbeam, chestnut, linden, and plane. The ranking of the branch wood samples in descending order with the respective DEA-AHP scores is beech, poplar, alder, hophornbeam, oak, hornbeam, ash, rhododendron, eucalyptus, maple, linden, chestnut, plane, elm, and hazelnut. The sequence of the trunk bark samples is poplar, hornbeam, beech, chestnut, ash, alder, rhododendron, linden, hazelnut, maple, hophornbeam, oak, plane, elm, and eucalyptus. Lastly, the priority order of the branch bark samples is as follows: rhododendron, poplar, beech, linden, hornbeam, hazelnut, chestnut, hophornbeam, ash, alder, maple, oak, elm, plane, and eucalyptus. Additionally, comparative and sensitivity analyses are conducted to shed light on efficiency changes between the samples. The proposed framework can be used as a technical reference for selecting the most efficient materials and determining the effects of different input values on efficiency levels.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 3","pages":"Article 100152"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X25000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a two-phase decision-making framework to evaluate the calorific efficiencies of wood and bark samples obtained from the trunks and branches of fifteen hardwood tree species. The proposed framework integrates the data envelopment analysis (DEA) with the analytic hierarchy process (AHP). The DEA method is used to perform pairwise comparisons of the wood and bark samples. Ash content, volatile matter content, and fixed carbon content are selected as inputs, while the calorific value is used as the output. The results from the DEA analysis are analyzed using the AHP method to determine precise efficiency ranking indexes. The ranking order of the trunk wood samples is determined as follows: beech, oak, eucalyptus, hophornbeam, hazelnut, poplar, alder, maple, rhododendron, elm, ash, hornbeam, chestnut, linden, and plane. The ranking of the branch wood samples in descending order with the respective DEA-AHP scores is beech, poplar, alder, hophornbeam, oak, hornbeam, ash, rhododendron, eucalyptus, maple, linden, chestnut, plane, elm, and hazelnut. The sequence of the trunk bark samples is poplar, hornbeam, beech, chestnut, ash, alder, rhododendron, linden, hazelnut, maple, hophornbeam, oak, plane, elm, and eucalyptus. Lastly, the priority order of the branch bark samples is as follows: rhododendron, poplar, beech, linden, hornbeam, hazelnut, chestnut, hophornbeam, ash, alder, maple, oak, elm, plane, and eucalyptus. Additionally, comparative and sensitivity analyses are conducted to shed light on efficiency changes between the samples. The proposed framework can be used as a technical reference for selecting the most efficient materials and determining the effects of different input values on efficiency levels.
基于DEA和AHP方法的硬木热效率评价框架
本研究提出了一个两阶段的决策框架,以评估从15种硬木树种的树干和树枝中获得的木材和树皮样品的热效率。该框架将数据包络分析(DEA)与层次分析法(AHP)相结合。采用DEA方法对木材和树皮样本进行两两比较。选择灰分含量、挥发物含量、固定碳含量作为输入,热值作为输出。采用层次分析法对DEA分析结果进行分析,确定精确的效率排序指标。树干木材样品的排序顺序确定为:山毛榉、橡树、桉树、hopnhorn、榛子、杨树、桤木、枫木、杜鹃花、榆树、白蜡树、角木、栗树、椴树、板栗。各枝材样本的DEA-AHP得分由高到低依次为山毛榉、杨树、桤木、hopnhoram、橡树、角木、白蜡树、杜鹃花、桉树、枫、椴树、板栗、板栗、榆树和榛子。树干树皮样本的顺序是杨树、角树、山毛榉、栗树、白蜡树、桤木、杜鹃花、菩提树、榛子、枫树、hophornbeam、橡树、飞机、榆树和桉树。最后,树枝树皮样品的优先级顺序为:杜鹃花、杨树、山毛榉、菩提树、角树、榛子、栗子、hophornbeam、白蜡树、桤木、枫木、橡树、榆树、飞机、桉树。此外,还进行了对比分析和敏感性分析,以揭示样品之间的效率变化。所提出的框架可作为选择最有效材料和确定不同投入值对效率水平的影响的技术参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信