{"title":"The Wang–Landau study of the frustrated J1-J2 Ising model on the honeycomb lattice: Phase diagrams and residual entropy","authors":"Mouhcine Azhari , Hoseung Jang , Unjong Yu","doi":"10.1016/j.rinp.2025.108412","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the full phase diagram of the frustrated <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> Ising model on the two-dimensional honeycomb lattice, incorporating both nearest-neighbor interaction <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and next-nearest-neighbor interaction <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> using the Wang–Landau Monte Carlo method combined with finite-size scaling analysis. We map out the zero- and finite-temperature phase diagrams as a function of <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. From the entropy profile, we identify four distinct ground-state structures — ferromagnetic, antiferromagnetic, dimer, and stripe states — and confirm that the residual entropy scales linearly with the lattice’s linear dimension in the stripe and dimer ground states. Our results suggest that the transition from the paramagnetic phase into the dimer or stripe phase changes its nature from first-order to continuous while the transition into the ferromagnetic or antiferromagnetic phase is continuous and belongs to the two-dimensional Ising universality class.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"76 ","pages":"Article 108412"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725003067","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the full phase diagram of the frustrated - Ising model on the two-dimensional honeycomb lattice, incorporating both nearest-neighbor interaction and next-nearest-neighbor interaction using the Wang–Landau Monte Carlo method combined with finite-size scaling analysis. We map out the zero- and finite-temperature phase diagrams as a function of . From the entropy profile, we identify four distinct ground-state structures — ferromagnetic, antiferromagnetic, dimer, and stripe states — and confirm that the residual entropy scales linearly with the lattice’s linear dimension in the stripe and dimer ground states. Our results suggest that the transition from the paramagnetic phase into the dimer or stripe phase changes its nature from first-order to continuous while the transition into the ferromagnetic or antiferromagnetic phase is continuous and belongs to the two-dimensional Ising universality class.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.