A hybrid YOLOv10—Faster R-CNN framework for mobility-aid detection and traffic optimization in disability-inclusive smart cities

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Mostafa A. Elhosseini , Hanaa A. Sayed , Rasha F. El-Agamy , Amna Bamaqa , Malik Almaliki , Tamer Ahmed Farrag , Hanaa ZainEldin , Mahmoud Badawy
{"title":"A hybrid YOLOv10—Faster R-CNN framework for mobility-aid detection and traffic optimization in disability-inclusive smart cities","authors":"Mostafa A. Elhosseini ,&nbsp;Hanaa A. Sayed ,&nbsp;Rasha F. El-Agamy ,&nbsp;Amna Bamaqa ,&nbsp;Malik Almaliki ,&nbsp;Tamer Ahmed Farrag ,&nbsp;Hanaa ZainEldin ,&nbsp;Mahmoud Badawy","doi":"10.1016/j.aej.2025.08.044","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient transportation for individuals with mobility disabilities in smart cities remains a critical challenge: high-speed detectors such as YOLO sacrifice precision under occlusion or poor lighting. Accurate models like Faster R-CNN incur latencies exceeding 100 ms per frame and lack integrated routing for disabled users. To address these shortcomings, this study proposes a hybrid YOLOv10–Faster R-CNN framework that sequentially applies You Only Look Once (YOLOv10) (operating at 45 fps) for initial mobility-aid localization and Faster R-CNN for bounding-box refinement, with a confidence-weighted fusion module to suppress false positives without compromising recall. By augmenting this dual-stage detection pipeline with an ensemble voting classifier that predicts traffic severity from refined detections and live intelligent transportation systems (ITSs) density metrics, the proposed system delivers the first end-to-end solution for real-time, accessibility-aware route planning tailored to wheelchair and crutch users—a capability previously unaddressed by standalone object-detection or traffic-management methods. We validate our approach on three complementary datasets – real-time urban traffic feeds, a diverse mobility-aid image corpus (wheelchairs, crutches), and a wheelchair-specific subdataset – and evaluate performance through mean average precision (mAP), recall, inference latency, traffic-prediction accuracy, and disabled-user travel-time reduction. The hybrid model achieves 99.4% mAP for general mobility aids and 98.9% mAP for wheelchairs, attains 100% recall (a 23.46% increase in true-positive detections over standalone baselines), and maintains an end-to-end latency of 22 ms per frame (<span><math><mrow><mo>≈</mo><mn>45</mn><mi>f</mi><mi>p</mi><mi>s</mi></mrow></math></span>). Traffic severity is predicted with 98.2% accuracy, and the optimized routing engine reduces disabled-user travel time by 17.3% under peak congestion compared to standard shortest-path methods. In comparative experiments, our framework outperforms YOLOv10 (mAP improvement of 2.1%) and Faster R-CNN (latency reduction of 78 ms per frame), establishing a new benchmark for inclusive, real-time traffic management in disability-inclusive smart cities.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"129 ","pages":"Pages 1279-1298"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825009421","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient transportation for individuals with mobility disabilities in smart cities remains a critical challenge: high-speed detectors such as YOLO sacrifice precision under occlusion or poor lighting. Accurate models like Faster R-CNN incur latencies exceeding 100 ms per frame and lack integrated routing for disabled users. To address these shortcomings, this study proposes a hybrid YOLOv10–Faster R-CNN framework that sequentially applies You Only Look Once (YOLOv10) (operating at 45 fps) for initial mobility-aid localization and Faster R-CNN for bounding-box refinement, with a confidence-weighted fusion module to suppress false positives without compromising recall. By augmenting this dual-stage detection pipeline with an ensemble voting classifier that predicts traffic severity from refined detections and live intelligent transportation systems (ITSs) density metrics, the proposed system delivers the first end-to-end solution for real-time, accessibility-aware route planning tailored to wheelchair and crutch users—a capability previously unaddressed by standalone object-detection or traffic-management methods. We validate our approach on three complementary datasets – real-time urban traffic feeds, a diverse mobility-aid image corpus (wheelchairs, crutches), and a wheelchair-specific subdataset – and evaluate performance through mean average precision (mAP), recall, inference latency, traffic-prediction accuracy, and disabled-user travel-time reduction. The hybrid model achieves 99.4% mAP for general mobility aids and 98.9% mAP for wheelchairs, attains 100% recall (a 23.46% increase in true-positive detections over standalone baselines), and maintains an end-to-end latency of 22 ms per frame (45fps). Traffic severity is predicted with 98.2% accuracy, and the optimized routing engine reduces disabled-user travel time by 17.3% under peak congestion compared to standard shortest-path methods. In comparative experiments, our framework outperforms YOLOv10 (mAP improvement of 2.1%) and Faster R-CNN (latency reduction of 78 ms per frame), establishing a new benchmark for inclusive, real-time traffic management in disability-inclusive smart cities.
基于YOLOv10-Faster R-CNN混合框架的残障包容智慧城市助行检测与交通优化
在智慧城市中,为行动不便的个人提供高效的交通仍然是一个严峻的挑战:像YOLO这样的高速探测器在遮挡或光线不足的情况下会牺牲精度。像Faster R-CNN这样的精确模型会导致每帧超过100毫秒的延迟,并且缺乏针对残疾用户的集成路由。为了解决这些缺点,本研究提出了一个混合YOLOv10 - Faster R-CNN框架,该框架顺序应用You Only Look Once (YOLOv10)(运行速度为45 fps)进行初始移动辅助定位,使用Faster R-CNN进行边界盒优化,并使用置信度加权融合模块来抑制误报而不影响召回。通过使用集成投票分类器(通过精确检测和实时智能交通系统(its)密度指标预测交通严重程度)来增强这种双阶段检测管道,该系统为轮椅和拐杖用户量身定制的实时、可达性感知路线规划提供了首个端到端解决方案,这是以前独立对象检测或交通管理方法无法解决的问题。我们在三个互补的数据集上验证了我们的方法——实时城市交通数据,不同的移动辅助图像语料库(轮椅,拐杖)和轮椅特定的子数据集——并通过平均精度(mAP),召回率,推理延迟,交通预测精度和残疾用户旅行时间减少来评估性能。混合模型在一般助行工具和轮椅上的mAP分别达到99.4%和98.9%,召回率达到100%(与独立基线相比,真阳性检测率提高了23.46%),端到端延迟保持在每帧22毫秒(≈45fps)。预测交通严重程度的准确率为98.2%,与标准最短路径方法相比,优化后的路由引擎在高峰拥堵下将残疾用户的出行时间减少了17.3%。在对比实验中,我们的框架优于YOLOv10 (mAP改进2.1%)和Faster R-CNN(每帧延迟减少78 ms),为包容残疾人的智慧城市的包容性实时交通管理建立了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信