Retrieving and discovering new knowledge from documents' abstracts in scientific databases: Proposing a query-based abstractive summarization model

Neda Abbasi Dashtaki , Mehrdad CheshmehSohrabi , Mitra Pashootanizadeh , Hamidreza Baradaran Kashani
{"title":"Retrieving and discovering new knowledge from documents' abstracts in scientific databases: Proposing a query-based abstractive summarization model","authors":"Neda Abbasi Dashtaki ,&nbsp;Mehrdad CheshmehSohrabi ,&nbsp;Mitra Pashootanizadeh ,&nbsp;Hamidreza Baradaran Kashani","doi":"10.1016/j.jjimei.2025.100366","DOIUrl":null,"url":null,"abstract":"<div><div>Current search engines for Knowledge Retrieval (KR) and Knowledge Discovery (KD) do not effectively utilize scientifically validated documents, especially those indexed in scientific databases. Scientific databases e.g., Scopus primarily consist of document-based content and provide documents' abstract. Their Information Retrieval (IR) system only perform document searches and lack the capability to extract and discover new knowledge from documents' abstract in these databases and responding to users’ queries. The aim is to introduce a model that can efficiently perform these tasks. The statistical population for this study encompasses all scientific databases, with a particular emphasis on Scopus. To clarify the process of KR and KD as we define it, we employed a systematic review and meta-analysis framework using 33 queries. We conducted the identification, screening, eligibility, and inclusion steps following the PRISMA protocol. Next, we performed extraction, labeling, grouping, analysis, and inference. The outcome of these processes provided us with novel insights, which contribute to our exploratory knowledge. To automate these processes, we have proposed a conceptual model from query-based indirect abstractive summarization approach. The outcomes of this research offer fresh insights to database designers, administrators, and researchers, enabling the development of tools for KR and KD within these invaluable knowledge repositories. The integration of such tools into scientific databases will enhance user access to scientific knowledge to meet their informational and research needs.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 2","pages":"Article 100366"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current search engines for Knowledge Retrieval (KR) and Knowledge Discovery (KD) do not effectively utilize scientifically validated documents, especially those indexed in scientific databases. Scientific databases e.g., Scopus primarily consist of document-based content and provide documents' abstract. Their Information Retrieval (IR) system only perform document searches and lack the capability to extract and discover new knowledge from documents' abstract in these databases and responding to users’ queries. The aim is to introduce a model that can efficiently perform these tasks. The statistical population for this study encompasses all scientific databases, with a particular emphasis on Scopus. To clarify the process of KR and KD as we define it, we employed a systematic review and meta-analysis framework using 33 queries. We conducted the identification, screening, eligibility, and inclusion steps following the PRISMA protocol. Next, we performed extraction, labeling, grouping, analysis, and inference. The outcome of these processes provided us with novel insights, which contribute to our exploratory knowledge. To automate these processes, we have proposed a conceptual model from query-based indirect abstractive summarization approach. The outcomes of this research offer fresh insights to database designers, administrators, and researchers, enabling the development of tools for KR and KD within these invaluable knowledge repositories. The integration of such tools into scientific databases will enhance user access to scientific knowledge to meet their informational and research needs.
从科学数据库的文献摘要中检索和发现新知识:提出一种基于查询的抽象摘要模型
目前的知识检索(KR)和知识发现(KD)搜索引擎不能有效地利用科学验证的文献,特别是那些在科学数据库中索引的文献。科学数据库,例如Scopus,主要由基于文档的内容组成,并提供文档摘要。它们的信息检索(Information Retrieval, IR)系统只进行文档搜索,缺乏从这些数据库中的文档摘要中提取和发现新知识和响应用户查询的能力。目的是引入一个能够有效执行这些任务的模型。本研究的统计人口包括所有科学数据库,特别强调Scopus。为了澄清我们定义的KR和KD的过程,我们采用了一个系统的回顾和荟萃分析框架,使用了33个查询。我们按照PRISMA方案进行了鉴定、筛选、入选和纳入步骤。接下来,我们进行了提取、标记、分组、分析和推理。这些过程的结果为我们提供了新的见解,有助于我们的探索性知识。为了实现这些过程的自动化,我们提出了一个基于查询的间接抽象摘要方法的概念模型。这项研究的结果为数据库设计人员、管理员和研究人员提供了新的见解,从而能够在这些宝贵的知识库中开发用于KR和KD的工具。将这些工具纳入科学数据库将增加用户获取科学知识的机会,以满足他们的信息和研究需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信