A note on the reliability of goal-oriented error estimates for Galerkin finite element methods with nonlinear functionals

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Brian N. Granzow , Stephen D. Bond , D. Thomas Seidl , Bernhard Endtmayer
{"title":"A note on the reliability of goal-oriented error estimates for Galerkin finite element methods with nonlinear functionals","authors":"Brian N. Granzow ,&nbsp;Stephen D. Bond ,&nbsp;D. Thomas Seidl ,&nbsp;Bernhard Endtmayer","doi":"10.1016/j.aml.2025.109742","DOIUrl":null,"url":null,"abstract":"<div><div>We consider estimating the discretization error in a nonlinear functional <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> in the setting of an abstract variational problem: find <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span> such that <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>φ</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>φ</mi><mo>)</mo></mrow><mspace></mspace><mo>∀</mo><mi>φ</mi><mo>∈</mo><mi>V</mi></mrow></math></span>, as approximated by a Galerkin finite element method. Here, <span><math><mi>V</mi></math></span> is a Hilbert space, <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> is a bilinear form, and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> is a linear functional. We consider well-known error estimates <span><math><mi>η</mi></math></span> of the form <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>)</mo></mrow><mo>≈</mo><mi>η</mi><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> denotes a finite element approximation to <span><math><mi>u</mi></math></span>, and <span><math><mi>z</mi></math></span> denotes the solution to an auxiliary adjoint variational problem. We show that there exist nonlinear functionals for which error estimates of this form are not reliable, even in the presence of an exact adjoint solution <span><math><mi>z</mi></math></span>. An estimate <span><math><mi>η</mi></math></span> is said to be reliable if there exists a constant <span><math><mrow><mi>C</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></mrow></math></span> independent of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>C</mi><mrow><mo>|</mo><mi>η</mi><mo>|</mo></mrow></mrow></math></span>. We present several example pairs of bilinear forms and nonlinear functionals where reliability of <span><math><mi>η</mi></math></span> is not achieved.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109742"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider estimating the discretization error in a nonlinear functional J(u) in the setting of an abstract variational problem: find uV such that B(u,φ)=L(φ)φV, as approximated by a Galerkin finite element method. Here, V is a Hilbert space, B(,) is a bilinear form, and L() is a linear functional. We consider well-known error estimates η of the form J(u)J(uh)η=L(z)B(uh,z), where uh denotes a finite element approximation to u, and z denotes the solution to an auxiliary adjoint variational problem. We show that there exist nonlinear functionals for which error estimates of this form are not reliable, even in the presence of an exact adjoint solution z. An estimate η is said to be reliable if there exists a constant CR>0 independent of uh such that |J(u)J(uh)|C|η|. We present several example pairs of bilinear forms and nonlinear functionals where reliability of η is not achieved.
非线性泛函Galerkin有限元法目标导向误差估计的可靠性问题
我们考虑在一个抽象变分问题的集合中估计非线性泛函J(u)的离散化误差:找到u∈V使得B(u,φ)=L(φ)∀φ∈V,用伽辽金有限元法近似。这里,V是希尔伯特空间,B(⋅,⋅)是双线性形式,L(⋅)是线性泛函。我们考虑众所周知的误差估计η的形式为J(u)−J(uh)≈η=L(z)−B(uh,z),其中uh表示u的有限元近似,z表示辅助伴随变分问题的解。我们证明了存在这种形式的非线性泛函的误差估计是不可靠的,即使在精确伴随解z存在的情况下。如果存在一个常数C∈R>;0与uh无关,使得|J(u)−J(uh)|≤C|η|,则估计η是可靠的。我们给出了几个双线性形式和非线性泛函的例子对,其中η的可靠度没有达到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信