Brian N. Granzow , Stephen D. Bond , D. Thomas Seidl , Bernhard Endtmayer
{"title":"A note on the reliability of goal-oriented error estimates for Galerkin finite element methods with nonlinear functionals","authors":"Brian N. Granzow , Stephen D. Bond , D. Thomas Seidl , Bernhard Endtmayer","doi":"10.1016/j.aml.2025.109742","DOIUrl":null,"url":null,"abstract":"<div><div>We consider estimating the discretization error in a nonlinear functional <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> in the setting of an abstract variational problem: find <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span> such that <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>φ</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>φ</mi><mo>)</mo></mrow><mspace></mspace><mo>∀</mo><mi>φ</mi><mo>∈</mo><mi>V</mi></mrow></math></span>, as approximated by a Galerkin finite element method. Here, <span><math><mi>V</mi></math></span> is a Hilbert space, <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> is a bilinear form, and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> is a linear functional. We consider well-known error estimates <span><math><mi>η</mi></math></span> of the form <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>)</mo></mrow><mo>≈</mo><mi>η</mi><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>,</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> denotes a finite element approximation to <span><math><mi>u</mi></math></span>, and <span><math><mi>z</mi></math></span> denotes the solution to an auxiliary adjoint variational problem. We show that there exist nonlinear functionals for which error estimates of this form are not reliable, even in the presence of an exact adjoint solution <span><math><mi>z</mi></math></span>. An estimate <span><math><mi>η</mi></math></span> is said to be reliable if there exists a constant <span><math><mrow><mi>C</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>></mo><mn>0</mn></mrow></msub></mrow></math></span> independent of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>C</mi><mrow><mo>|</mo><mi>η</mi><mo>|</mo></mrow></mrow></math></span>. We present several example pairs of bilinear forms and nonlinear functionals where reliability of <span><math><mi>η</mi></math></span> is not achieved.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109742"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider estimating the discretization error in a nonlinear functional in the setting of an abstract variational problem: find such that , as approximated by a Galerkin finite element method. Here, is a Hilbert space, is a bilinear form, and is a linear functional. We consider well-known error estimates of the form , where denotes a finite element approximation to , and denotes the solution to an auxiliary adjoint variational problem. We show that there exist nonlinear functionals for which error estimates of this form are not reliable, even in the presence of an exact adjoint solution . An estimate is said to be reliable if there exists a constant independent of such that . We present several example pairs of bilinear forms and nonlinear functionals where reliability of is not achieved.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.