{"title":"Controllable electrolysis doping of organic semiconductors for stable perovskite solar cells","authors":"Hao Huang, Zhineng Lan, Yingying Yang, Huilin Yan, Meng Wan, Yi Lu, Shujie Qu, Tongtong Jiang, Changxu Sun, Benyu Liu, Peng Cui, Meicheng Li","doi":"10.1016/j.joule.2025.102106","DOIUrl":null,"url":null,"abstract":"The conventional doping method of organic semiconductors (commonly including lithium bis(trifluoromethane)sulfonimide [LiTFSI]) served as hole transport layers in perovskite solar cells (PSCs) suffers from a complex, time-consuming oxidation process, detrimentally impacting device stability. Herein, we propose a novel electrolysis doping strategy to modulate organic semiconductors, enabling controllable doping and effective Li⁺ removal. This electrolysis doping exploits holes with tunable oxidizing capabilities to oxidize organic semiconductors into ion radicals at the surface of the anode electrode, which exhibits a high reproducibility and a universal application on different organic semiconductors. Simultaneously, Li⁺ ions can be reduced to Li atoms at the surface of the cathode electrode, thus removing stability-damaging residual Li<sup>+</sup>. Accordingly, the regular PSCs using electrolyzed 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro) achieve a power conversion efficiency (PCE) of 26.16%, and the inverted-structured PSCs using electrolyzed poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine (PTAA) achieve a PCE of 25.57% with satisfying stability by maintaining 91% of initial efficiency after operating for 1,400 h under continuous one-sun illumination.","PeriodicalId":343,"journal":{"name":"Joule","volume":"30 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102106","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The conventional doping method of organic semiconductors (commonly including lithium bis(trifluoromethane)sulfonimide [LiTFSI]) served as hole transport layers in perovskite solar cells (PSCs) suffers from a complex, time-consuming oxidation process, detrimentally impacting device stability. Herein, we propose a novel electrolysis doping strategy to modulate organic semiconductors, enabling controllable doping and effective Li⁺ removal. This electrolysis doping exploits holes with tunable oxidizing capabilities to oxidize organic semiconductors into ion radicals at the surface of the anode electrode, which exhibits a high reproducibility and a universal application on different organic semiconductors. Simultaneously, Li⁺ ions can be reduced to Li atoms at the surface of the cathode electrode, thus removing stability-damaging residual Li+. Accordingly, the regular PSCs using electrolyzed 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro) achieve a power conversion efficiency (PCE) of 26.16%, and the inverted-structured PSCs using electrolyzed poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine (PTAA) achieve a PCE of 25.57% with satisfying stability by maintaining 91% of initial efficiency after operating for 1,400 h under continuous one-sun illumination.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.