{"title":"Decoding Multi‐Electron Redox Pathways in Carbon‐Free Iron Selenide Cathodes: Enabling Energy‐Dense All‐Solid‐State Lithium Batteries Across Extreme Temperatures","authors":"Qingyu Li, Shuxian Zhang, Renbo Liu, Xiaobo Jiang, Shijian Xiong, Yuanchang Shi, Zhiwei Zhang, Chengxiang Wang, Peng Xiao, Yuanwei Sun, Longwei Yin, Rutao Wang","doi":"10.1002/adma.202511693","DOIUrl":null,"url":null,"abstract":"Conversion‐type iron chalcogen cathodes, characterized by the multi‐electron redox reaction and cost‐effectiveness, represent an alternative pathway for next‐generation all‐solid‐state lithium batteries (ASSLBs). In this study, α‐FeSe as a cathode is identified that operates stably through a Fe<jats:sup>2+</jats:sup>/Fe<jats:sup>0</jats:sup> redox reaction in a sulfide solid‐state system at 30 <jats:sup>°</jats:sup>C, without the need for any carbon additives. This carbon‐free α‐FeSe cathode exhibits rapid Li<jats:sup>+</jats:sup>/e<jats:sup>−</jats:sup> transfer properties and limited volume change, thus yielding high reversible capacity (564.6 mAh g<jats:sup>−1</jats:sup>), long‐term cycling stability (80.3% capacity retention after 800 cycles), high areal loadings (≈26 mg cm<jats:sup>−2</jats:sup>), and wide‐temperature operability (−20–150 °C). Apart from Fe<jats:sup>2+</jats:sup>/Fe<jats:sup>0</jats:sup> redox reaction, extended cycling or elevated temperature induces partial electrolyte decomposition to generate S‐containing species while triggering a complementary S/S<jats:sup>2</jats:sup><jats:sup>−</jats:sup> redox process. This dual mechanism enables exceptional cyclability (>6000 cycles at 60 °C) and a near‐doubled specific capacity of 956 mAh g<jats:sup>−1</jats:sup> at 120 <jats:sup>°</jats:sup>C. Thereby, as‐fabricated ASSLBs deliver the ultrahigh energy densities (515.3 Wh kg<jats:sup>−1</jats:sup>/1874.6 Wh L<jats:sup>−1</jats:sup> at 30 <jats:sup>°</jats:sup>C, 1568 Wh kg<jats:sup>−1</jats:sup>/8310 Wh L<jats:sup>−1</jats:sup> at 120 <jats:sup>°</jats:sup>C), demonstrating the great potential of using iron selenides as the next‐generation cathode for practical applications of ASSLBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"24 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202511693","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conversion‐type iron chalcogen cathodes, characterized by the multi‐electron redox reaction and cost‐effectiveness, represent an alternative pathway for next‐generation all‐solid‐state lithium batteries (ASSLBs). In this study, α‐FeSe as a cathode is identified that operates stably through a Fe2+/Fe0 redox reaction in a sulfide solid‐state system at 30 °C, without the need for any carbon additives. This carbon‐free α‐FeSe cathode exhibits rapid Li+/e− transfer properties and limited volume change, thus yielding high reversible capacity (564.6 mAh g−1), long‐term cycling stability (80.3% capacity retention after 800 cycles), high areal loadings (≈26 mg cm−2), and wide‐temperature operability (−20–150 °C). Apart from Fe2+/Fe0 redox reaction, extended cycling or elevated temperature induces partial electrolyte decomposition to generate S‐containing species while triggering a complementary S/S2− redox process. This dual mechanism enables exceptional cyclability (>6000 cycles at 60 °C) and a near‐doubled specific capacity of 956 mAh g−1 at 120 °C. Thereby, as‐fabricated ASSLBs deliver the ultrahigh energy densities (515.3 Wh kg−1/1874.6 Wh L−1 at 30 °C, 1568 Wh kg−1/8310 Wh L−1 at 120 °C), demonstrating the great potential of using iron selenides as the next‐generation cathode for practical applications of ASSLBs.
转换型铁离子阴极具有多电子氧化还原反应和成本效益的特点,代表了下一代全固态锂电池(ASSLBs)的替代途径。在这项研究中,α - FeSe作为阴极,在30°C的硫化物固态体系中通过Fe2+/Fe0氧化还原反应稳定运行,无需任何碳添加剂。这种无碳α - FeSe阴极具有快速的Li+/e−转移特性和有限的体积变化,从而产生高可逆容量(564.6 mAh g−1),长期循环稳定性(800次循环后容量保持80.3%),高面积负载(≈26 mg cm−2)和宽温度可操作性(- 20-150°C)。除了Fe2+/Fe0氧化还原反应外,延长循环时间或升高温度可诱导部分电解质分解生成含S -的物质,同时触发互补的S/S2 -氧化还原过程。这种双重机制实现了卓越的可循环性(60°C下的>;6000次循环)和120°C下的956 mAh g - 1比容量近两倍。因此,制备的asslb提供了超高的能量密度(30°C时为515.3 Wh kg - 1/1874.6 Wh L - 1, 120°C时为1568 Wh kg - 1/8310 Wh L - 1),证明了硒化铁作为asslb实际应用的下一代阴极的巨大潜力。
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.