Self-supervised neural reconstructions for lensless imaging

IF 0.9 4区 物理与天体物理 Q4 OPTICS
Jose Reinaldo Cunha Santos Aroso Vieira Silva Neto, Hodaka Kawachi, Yasushi Yagi, Tomoya Nakamura
{"title":"Self-supervised neural reconstructions for lensless imaging","authors":"Jose Reinaldo Cunha Santos Aroso Vieira Silva Neto,&nbsp;Hodaka Kawachi,&nbsp;Yasushi Yagi,&nbsp;Tomoya Nakamura","doi":"10.1007/s10043-025-00992-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in lensless imaging reconstruction have primarily relied on supervised neural models trained using target images captured by lensed cameras via a beam splitter. However, we argue that using reference images from a different optical system introduces bias into the reconstruction process. To mitigate this issue, we propose a self-supervised approach that leverages data-fidelity guidance, similar to deep image prior, to train neural models for single-iteration lensless reconstruction. Through simulations and prototype camera experiments, we demonstrate that combining simple convex optimization methods with a denoising UNet improves perceptual quality (LPIPS), accelerates inference compared to traditional optimization techniques, and reduces potential unwanted biases in the reconstruction network.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"32 4","pages":"664 - 668"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10043-025-00992-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-025-00992-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in lensless imaging reconstruction have primarily relied on supervised neural models trained using target images captured by lensed cameras via a beam splitter. However, we argue that using reference images from a different optical system introduces bias into the reconstruction process. To mitigate this issue, we propose a self-supervised approach that leverages data-fidelity guidance, similar to deep image prior, to train neural models for single-iteration lensless reconstruction. Through simulations and prototype camera experiments, we demonstrate that combining simple convex optimization methods with a denoising UNet improves perceptual quality (LPIPS), accelerates inference compared to traditional optimization techniques, and reduces potential unwanted biases in the reconstruction network.

无透镜成像的自监督神经重建
无透镜成像重建的最新进展主要依赖于有监督的神经模型,该模型使用由有透镜相机通过分束器捕获的目标图像进行训练。然而,我们认为使用来自不同光学系统的参考图像会在重建过程中引入偏差。为了缓解这个问题,我们提出了一种自监督方法,利用数据保真度指导,类似于深度图像先验,训练神经模型进行单次迭代无透镜重建。通过模拟和原型相机实验,我们证明了将简单的凸优化方法与去噪UNet相结合可以提高感知质量(LPIPS),与传统优化技术相比可以加速推理,并减少重建网络中潜在的不必要的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信