{"title":"Thin-form-factor red-green-blue laser scanning system for full-color laser image projection","authors":"Shoji Yamada, Akira Nakao, Toshio Katsuyama, Osamu Kawasaki, Kazuki Iwabata, Yuuta Yabe, Tetsufumi Yoshida, Koichi Horii, Akira Himeno","doi":"10.1007/s10043-025-00985-w","DOIUrl":null,"url":null,"abstract":"<div><p>A thin-form-factor laser scanning system composed of a planar-type laser source with a waveguide-type combiner and a micro-electromechanical systems (MEMS) scanning mirror was developed. The laser source and MEMS mirror were mounted on a common substrate, resulting in a thin and small form factor. The scanning laser beam comprised coaxially combined red, green, and blue beams, capable of projecting a full-color laser scanning image. The system design incorporated a projection image distortion analysis, which assumed a raster scan scheme, whereby the horizontal fast-scan direction lay in the plane defined by the incident beam direction and the direction normal to the common substrate, and the vertical slow-scan direction lay in a plane perpendicular to the horizontal scan plane. The incident angle of the laser beam on the MEMS mirror was kept small (less than 45°). Three types of laser scanning systems were constructed to provide scanning laser beams with different beam directions by replacing the detachable beam-deflection modules as follows: (1) Simple mirror type directing the beam opposite to the incident beam, with a system height of 4 mm; (2) Beam splitter type directing the beam perpendicular to the incident beam, with a system height of 6 mm; and (3) Prism mirror type directing the beam forward relative to the incident beam, with a system height of 8 mm. The systems had distinctive features rendering each suitable for different applications. Thus, these laser scanning systems offer compact solutions for laser scanning image projection.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"32 3","pages":"519 - 527"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10043-025-00985-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-025-00985-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A thin-form-factor laser scanning system composed of a planar-type laser source with a waveguide-type combiner and a micro-electromechanical systems (MEMS) scanning mirror was developed. The laser source and MEMS mirror were mounted on a common substrate, resulting in a thin and small form factor. The scanning laser beam comprised coaxially combined red, green, and blue beams, capable of projecting a full-color laser scanning image. The system design incorporated a projection image distortion analysis, which assumed a raster scan scheme, whereby the horizontal fast-scan direction lay in the plane defined by the incident beam direction and the direction normal to the common substrate, and the vertical slow-scan direction lay in a plane perpendicular to the horizontal scan plane. The incident angle of the laser beam on the MEMS mirror was kept small (less than 45°). Three types of laser scanning systems were constructed to provide scanning laser beams with different beam directions by replacing the detachable beam-deflection modules as follows: (1) Simple mirror type directing the beam opposite to the incident beam, with a system height of 4 mm; (2) Beam splitter type directing the beam perpendicular to the incident beam, with a system height of 6 mm; and (3) Prism mirror type directing the beam forward relative to the incident beam, with a system height of 8 mm. The systems had distinctive features rendering each suitable for different applications. Thus, these laser scanning systems offer compact solutions for laser scanning image projection.
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.