{"title":"Physio-biochemical regulation of drought resistance in tree species within dryland plantations","authors":"Nana He, Xiaodong Gao, Gaochao Cai, Shuyi Zhou, Pengyan Jiang, Min Yang, Lianhao Zhao, Yaohui Cai, Xining Zhao","doi":"10.1093/plphys/kiaf384","DOIUrl":null,"url":null,"abstract":"Drought-resistance strategies play a crucial role in determining tree resilience and mortality. During drought, stomatal closure limits photosynthesis and triggers the overproduction of reactive oxygen species (ROS). This process may decrease carbohydrate availability, which is key for antioxidant defense and osmoregulation. However, the mechanisms by which different species coordinate physiological and biochemical responses to drought, particularly for dryland tree plantations, remain poorly understood. To this end, we analyzed gas exchange, leaf water potential, and biochemical variables in apple (Malus pumila Mill.) and black locust (Robinia pseudoacacia L.) during their growing seasons at sub-humid (Changwu) and semi-arid (Mizhi) sites in northwest China. Apple trees exhibited a partially isohydric behavior, which was accompanied by a corresponding increase in net photosynthetic rate (Pn) under combined soil and atmospheric drought (hereafter, compound drought). The synergistic effects of this water-use strategy, enhanced antioxidant capacity, and active osmoregulation collectively contributed to their drought resilience. In contrast, black locust displayed an extremely anisohydric behavior, which did not lead to a significant increase in Pn under severe compound drought. Black locust maintained osmoregulation at the expense of elevated malondialdehyde (MDA) levels, indicating enhanced oxidative stress. This study elucidates how stomatal regulation, osmoregulation, and antioxidant defenses interact in response to compound drought in these two species, offering insights into the mechanisms of drought resistance and potential drivers of mortality in dryland plantations.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"52 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf384","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought-resistance strategies play a crucial role in determining tree resilience and mortality. During drought, stomatal closure limits photosynthesis and triggers the overproduction of reactive oxygen species (ROS). This process may decrease carbohydrate availability, which is key for antioxidant defense and osmoregulation. However, the mechanisms by which different species coordinate physiological and biochemical responses to drought, particularly for dryland tree plantations, remain poorly understood. To this end, we analyzed gas exchange, leaf water potential, and biochemical variables in apple (Malus pumila Mill.) and black locust (Robinia pseudoacacia L.) during their growing seasons at sub-humid (Changwu) and semi-arid (Mizhi) sites in northwest China. Apple trees exhibited a partially isohydric behavior, which was accompanied by a corresponding increase in net photosynthetic rate (Pn) under combined soil and atmospheric drought (hereafter, compound drought). The synergistic effects of this water-use strategy, enhanced antioxidant capacity, and active osmoregulation collectively contributed to their drought resilience. In contrast, black locust displayed an extremely anisohydric behavior, which did not lead to a significant increase in Pn under severe compound drought. Black locust maintained osmoregulation at the expense of elevated malondialdehyde (MDA) levels, indicating enhanced oxidative stress. This study elucidates how stomatal regulation, osmoregulation, and antioxidant defenses interact in response to compound drought in these two species, offering insights into the mechanisms of drought resistance and potential drivers of mortality in dryland plantations.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.