Charles M. Truettner, Simon R. Poulson, Emanuele Ziaco, Adam Z. Csank
{"title":"Intraspecific Dominance Determines Subseasonal Pinus ponderosa Growth Response to Warm-Season Precipitation Amid Drought in Southern Nevada, USA","authors":"Charles M. Truettner, Simon R. Poulson, Emanuele Ziaco, Adam Z. Csank","doi":"10.1002/eco.70105","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Pinus ponderosa</i> is a widespread conifer species across western North America, yet its intraspecific variability in drought response remains understudied, particularly at subseasonal time scales. We investigated how intraspecific tree dominance influences physiological and anatomical growth responses to warm-season precipitation pulses in a semi-arid montane forest in southern Nevada, USA. Using high-resolution dendrochronology, quantitative wood anatomy and dual-isotope (δ<sup>18</sup>O, δ<sup>13</sup>C) analysis of tree-ring cellulose, we compared dominant (old-growth) and codominant (mature) trees during two growing seasons: one impacted by a remnant tropical storm that provided an uncharacteristic pulse of precipitation to southern Nevada during the monsoon season (2015) and one with drier conditions with little monsoonal precipitation (2016). Codominant trees exhibited stronger and more immediate growth responses to warm-season precipitation, characterized by increased tracheid production and cellulose δ<sup>18</sup>O values that matched those of warm-season precipitation δ<sup>18</sup>O values, indicating shallow soil water use. In contrast, dominant trees relied more on deeper soil moisture and showed more conservative growth strategies. These divergent strategies suggest that intraspecific dominance mediates access to water and controls the sensitivity of growth to seasonal precipitation variability, highlighting the importance of intraspecific variation in shaping forest resilience and climate adaptation strategies under increasing drought and climate extremes.</p>\n </div>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.70105","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pinus ponderosa is a widespread conifer species across western North America, yet its intraspecific variability in drought response remains understudied, particularly at subseasonal time scales. We investigated how intraspecific tree dominance influences physiological and anatomical growth responses to warm-season precipitation pulses in a semi-arid montane forest in southern Nevada, USA. Using high-resolution dendrochronology, quantitative wood anatomy and dual-isotope (δ18O, δ13C) analysis of tree-ring cellulose, we compared dominant (old-growth) and codominant (mature) trees during two growing seasons: one impacted by a remnant tropical storm that provided an uncharacteristic pulse of precipitation to southern Nevada during the monsoon season (2015) and one with drier conditions with little monsoonal precipitation (2016). Codominant trees exhibited stronger and more immediate growth responses to warm-season precipitation, characterized by increased tracheid production and cellulose δ18O values that matched those of warm-season precipitation δ18O values, indicating shallow soil water use. In contrast, dominant trees relied more on deeper soil moisture and showed more conservative growth strategies. These divergent strategies suggest that intraspecific dominance mediates access to water and controls the sensitivity of growth to seasonal precipitation variability, highlighting the importance of intraspecific variation in shaping forest resilience and climate adaptation strategies under increasing drought and climate extremes.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.