{"title":"Characterization and Implications of Water Chemistry and Heavy Metal Pollution in the Sixi River, Hunan, China","authors":"Lan Wang, Jianfeng Li, Feng Pan","doi":"10.1002/clen.70038","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Situated within the metallogenically critical Nanling metallogenic belt of Hunan Province, the Sixi River basin exemplifies subtropical watersheds experiencing compounded anthropogenic pressures from historic tin mining and intensive agriculture. This hydrogeochemical investigation examines heavy metal contamination dynamics across aquatic matrices in this Pearl River tributary. Field analyses reveal severe Hg (20× WHO guidelines) and As exceedances with distinct spatial stratification: contamination frequencies follow tailings dams (87.61%) > ponds (81.86%) > rivers (67.64%) > wells (71.76%), posing significant neurotoxic and carcinogenic risks. Dominant HCO<sub>3</sub>–Ca·Mg hydrochemical facies reflect carbonate-granite weathering regimes, with ionic concentrations declining from tailings (12.01 mg/L) to wells (7.40 mg/L). Pollution indices demonstrate pH-dependent metal mobility, where alkaline conditions (pH > 8.5) exacerbate Hg/As dissolution in lotic systems. Principal component analysis delineates dual pollution pathways: PC1 (33.3% variance, As–Hg–Cu) traces agricultural inputs in alluvial plains, whereas PC2 (19.9%, Tl–Pb–Sn–Mn) aligns with fault-controlled sulfide mineralization in the Bailashui tin belt. Critically, anthropogenic loading from fertilizer-enriched runoff exerts greater influence on basin-wide degradation than mining effluents, underscoring the lithogenic–anthropogenic interface in subtropical mining watersheds.</p>\n </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"53 9","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.70038","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Situated within the metallogenically critical Nanling metallogenic belt of Hunan Province, the Sixi River basin exemplifies subtropical watersheds experiencing compounded anthropogenic pressures from historic tin mining and intensive agriculture. This hydrogeochemical investigation examines heavy metal contamination dynamics across aquatic matrices in this Pearl River tributary. Field analyses reveal severe Hg (20× WHO guidelines) and As exceedances with distinct spatial stratification: contamination frequencies follow tailings dams (87.61%) > ponds (81.86%) > rivers (67.64%) > wells (71.76%), posing significant neurotoxic and carcinogenic risks. Dominant HCO3–Ca·Mg hydrochemical facies reflect carbonate-granite weathering regimes, with ionic concentrations declining from tailings (12.01 mg/L) to wells (7.40 mg/L). Pollution indices demonstrate pH-dependent metal mobility, where alkaline conditions (pH > 8.5) exacerbate Hg/As dissolution in lotic systems. Principal component analysis delineates dual pollution pathways: PC1 (33.3% variance, As–Hg–Cu) traces agricultural inputs in alluvial plains, whereas PC2 (19.9%, Tl–Pb–Sn–Mn) aligns with fault-controlled sulfide mineralization in the Bailashui tin belt. Critically, anthropogenic loading from fertilizer-enriched runoff exerts greater influence on basin-wide degradation than mining effluents, underscoring the lithogenic–anthropogenic interface in subtropical mining watersheds.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.