{"title":"Levo-Tryptophan Promotes Osteogenesis Through Calcium-Sensing Receptor","authors":"Peiran Li, Yanxi Li, Xuejiu Wang, Zhipeng Fan","doi":"10.1096/fba.2025-00130","DOIUrl":null,"url":null,"abstract":"<p>Previous studies reported the pro-osteogenic ability of L-Tryptophan (L-Trp) and Calcium-Sensing RCeceptor (CaSR) respectively. Recent researchers found L-Trp could activate CaSR. Therefore, this study investigated the osteogenic mechanisms of L-Trp through CaSR activation. Using in vivo and in vitro models, we evaluated L-Trp's effects on bone formation and osteoblast activity. Levo-Trp solution was injected into the temporomandibular joint of 3-week-old mice, and the mandibular development was observed by Micro-CT at 6 weeks of age. The pre-osteoblast cell line MC3T3-E1 cells were stimulated by L-Trp in vitro, and their proliferation, migration, and osteogenic ability were detected by CCK8 assay, alizarin red staining, etc. Transcriptome sequencing was used to investigate the underlying mechanism of L-Trp stimulation and validated by qPCR and Western blot analyses. Local injection of 0.5% L-Trp in juvenile mice significantly increased mandibular bone mineral density. In vitro, L-Trp enhanced MC3T3-E1 pre-osteoblast proliferation, migration, and differentiation, with upregulated osteogenic markers (<i>Runx2, Sp7, Alp</i>) and mineralization. CaSR antagonism (NPS-2143) abolished these effects, confirming CaSR's pivotal role. Transcriptome sequencing revealed L-Trp activation of the focal adhesion pathway, characterized by increased <i>Ptk2, Rhoa, Itga11</i>, and <i>Clec11a</i> expression. These findings established L-Trp as a CaSR-dependent osteogenic enhancer, mediated via the focal adhesion pathway.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"7 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2025-00130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fba.2025-00130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies reported the pro-osteogenic ability of L-Tryptophan (L-Trp) and Calcium-Sensing RCeceptor (CaSR) respectively. Recent researchers found L-Trp could activate CaSR. Therefore, this study investigated the osteogenic mechanisms of L-Trp through CaSR activation. Using in vivo and in vitro models, we evaluated L-Trp's effects on bone formation and osteoblast activity. Levo-Trp solution was injected into the temporomandibular joint of 3-week-old mice, and the mandibular development was observed by Micro-CT at 6 weeks of age. The pre-osteoblast cell line MC3T3-E1 cells were stimulated by L-Trp in vitro, and their proliferation, migration, and osteogenic ability were detected by CCK8 assay, alizarin red staining, etc. Transcriptome sequencing was used to investigate the underlying mechanism of L-Trp stimulation and validated by qPCR and Western blot analyses. Local injection of 0.5% L-Trp in juvenile mice significantly increased mandibular bone mineral density. In vitro, L-Trp enhanced MC3T3-E1 pre-osteoblast proliferation, migration, and differentiation, with upregulated osteogenic markers (Runx2, Sp7, Alp) and mineralization. CaSR antagonism (NPS-2143) abolished these effects, confirming CaSR's pivotal role. Transcriptome sequencing revealed L-Trp activation of the focal adhesion pathway, characterized by increased Ptk2, Rhoa, Itga11, and Clec11a expression. These findings established L-Trp as a CaSR-dependent osteogenic enhancer, mediated via the focal adhesion pathway.