Particularities of the structure and properties of TiC-Al2O3 complex ceramics obtained by combustion in open-air of TiO2-Al-C mixtures and sintering under load
Amel Bourbia, Samia Lemboub, Azzedine Boudebane, Said Graini, Said Boudebane, Soumaya Meddah
{"title":"Particularities of the structure and properties of TiC-Al2O3 complex ceramics obtained by combustion in open-air of TiO2-Al-C mixtures and sintering under load","authors":"Amel Bourbia, Samia Lemboub, Azzedine Boudebane, Said Graini, Said Boudebane, Soumaya Meddah","doi":"10.1007/s41779-025-01169-0","DOIUrl":null,"url":null,"abstract":"<div><p>The combustion in open-air of complex aluminothermic TiO<sub>2</sub>-Al-C mixtures, followed by sintering was used to produce TiC-Al<sub>2</sub>O<sub>3</sub> based ceramics. For this purpose, powders mixtures containing [TiO<sub>2</sub>-Al-C], [TiO<sub>2</sub> + Al + (90%C + 10%B)], [TiO<sub>2</sub> + (90%Al + 10%Mg) + C] and [(90%TiO<sub>2</sub> + 10%SiO<sub>2</sub>) + Al + C], were prepared via the conventional powder metallurgy route. The combustion product was crushed and sieved in order to recover the fractions less than 40 µm. The different mixtures of ceramic powders first underwent cold uniaxial compression followed by a sintering at 2023 K, under a cyclic load of 50 MPa applied for 2.4 ks. X-ray diffraction analysis of the samples revealed the presence of TiC, Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>TiO<sub>5</sub> spinel. The combustion in open-air is accompanied by an evaporation of aluminum, the presence of unreduced TiO<sub>2</sub> and the formation of new oxides such as Ti<sub>3</sub>O<sub>5</sub> and Ti<sub>4</sub>O<sub>7</sub> which generate Al<sub>2</sub>TiO<sub>5</sub> spinel during the sintering. Microstructural analyses using a scanning electron microscope combined with semi-quantitative evaluation revealed the basic ceramic structure composed of TiC, Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>TiO<sub>5</sub>. The additions of boron, magnesium or silica generate new phases such as TiB<sub>2</sub>, MgAl<sub>2</sub>O<sub>4</sub> and Ti<sub>3</sub>SiC<sub>2</sub> modifying the structure and the ceramic composition. Finally, the aluminothermic mixtures composition therefore has a significant impact on the structure, hardness, micro-indentation results and tribological behavior of the ceramics studied. Thus, the lowest wear rate and friction coefficient were recorded on the ceramic containing 33.81wt.% TiC—51.73wt.% Al<sub>2</sub>O<sub>3</sub>—3.42wt.% Al<sub>2</sub>TiO<sub>5</sub>—11.04wt.% Ti<sub>3</sub>SiC<sub>2</sub>.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"61 4","pages":"1335 - 1349"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-025-01169-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The combustion in open-air of complex aluminothermic TiO2-Al-C mixtures, followed by sintering was used to produce TiC-Al2O3 based ceramics. For this purpose, powders mixtures containing [TiO2-Al-C], [TiO2 + Al + (90%C + 10%B)], [TiO2 + (90%Al + 10%Mg) + C] and [(90%TiO2 + 10%SiO2) + Al + C], were prepared via the conventional powder metallurgy route. The combustion product was crushed and sieved in order to recover the fractions less than 40 µm. The different mixtures of ceramic powders first underwent cold uniaxial compression followed by a sintering at 2023 K, under a cyclic load of 50 MPa applied for 2.4 ks. X-ray diffraction analysis of the samples revealed the presence of TiC, Al2O3 and Al2TiO5 spinel. The combustion in open-air is accompanied by an evaporation of aluminum, the presence of unreduced TiO2 and the formation of new oxides such as Ti3O5 and Ti4O7 which generate Al2TiO5 spinel during the sintering. Microstructural analyses using a scanning electron microscope combined with semi-quantitative evaluation revealed the basic ceramic structure composed of TiC, Al2O3 and Al2TiO5. The additions of boron, magnesium or silica generate new phases such as TiB2, MgAl2O4 and Ti3SiC2 modifying the structure and the ceramic composition. Finally, the aluminothermic mixtures composition therefore has a significant impact on the structure, hardness, micro-indentation results and tribological behavior of the ceramics studied. Thus, the lowest wear rate and friction coefficient were recorded on the ceramic containing 33.81wt.% TiC—51.73wt.% Al2O3—3.42wt.% Al2TiO5—11.04wt.% Ti3SiC2.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted