{"title":"Enhanced piezoelectric properties in high-TC Bi5Ti3FeO15 via dysprosium substitution: a rare-earth doping approach for superior performance","authors":"Hui-Lin Li, Yi-Nuo Chen, Qian Wang, En-Meng Liang, Yi-Jun Wan, Xin-Yu Yu, Zhi-Qiang Li, Xian Zhao, Chun-Ming Wang","doi":"10.1007/s41779-025-01193-0","DOIUrl":null,"url":null,"abstract":"<div><p>The development of iron-containing Aurivillius-phase bismuth layer-structured ferroelectrics (BLSFs) has garnered considerable attention due to their unique multiferroic properties, characterized by the coexistence of ferroelectric and magnetic ordering. Among these materials, bismuth titanate-ferrite (Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>) stands out as a prominent candidate for high-temperature piezoelectric applications, given its elevated Curie temperature (<i>T</i><sub>C</sub>) of 760 °C. Despite its potential, the practical utilization of Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> in high-temperature piezoelectric devices is limited by low resistance at elevated temperatures and poor piezoelectric performance. To address these issues, we explored a composition optimization strategy involving the partial substitution of bismuth ions with rare-earth dysprosium (Dy) ions to enhance piezoelectric performance and direct-current (DC) electrical resistivity of Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>. This substitution aims to mitigate the volatility of bismuth ions and stabilize the (Bi<sub>2</sub>O<sub>2</sub>)<sup>2+</sup> layer, thereby reducing oxygen vacancy concentration. We successfully synthesized Bi<sub>5-<i>x</i></sub>Dy<sub><i>x</i></sub>Ti<sub>3</sub>FeO<sub>15</sub> (BTF-100<i>x</i>Dy) oxide compounds using a solid-state reaction method. Our experimental results demonstrate that dysprosium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> exhibits markedly enhanced piezoelectric performance compared to the unmodified Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>. Specifically, the BTF-5Dy composition achieved a significant increase in the piezoelectric constant (<i>d</i><sub>33</sub>) to 23.1 pC/N, which is approximately three times higher than that of the unmodified Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> (7.1 pC/N). The temperature-dependent measurements of DC electrical resistivity revealed that dysprosium substitution substantially improves the material’s electrical resistivity at elevated temperatures. Additionally, BTF-5Dy exhibited a high <i>T</i><sub>C</sub> of 787 °C, a low dielectric loss tan<i>δ</i> (~ 0.38% at 1 MHz), and good thermal stability of electromechanical properties up to 300 °C. These improvements are attributed to lattice distortion and reduced oxygen vacancies. Collectively, these findings suggest that dysprosium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> ceramics hold great promise as high-performance materials for high-temperature piezoelectric applications.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"61 4","pages":"1571 - 1582"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-025-01193-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of iron-containing Aurivillius-phase bismuth layer-structured ferroelectrics (BLSFs) has garnered considerable attention due to their unique multiferroic properties, characterized by the coexistence of ferroelectric and magnetic ordering. Among these materials, bismuth titanate-ferrite (Bi5Ti3FeO15) stands out as a prominent candidate for high-temperature piezoelectric applications, given its elevated Curie temperature (TC) of 760 °C. Despite its potential, the practical utilization of Bi5Ti3FeO15 in high-temperature piezoelectric devices is limited by low resistance at elevated temperatures and poor piezoelectric performance. To address these issues, we explored a composition optimization strategy involving the partial substitution of bismuth ions with rare-earth dysprosium (Dy) ions to enhance piezoelectric performance and direct-current (DC) electrical resistivity of Bi5Ti3FeO15. This substitution aims to mitigate the volatility of bismuth ions and stabilize the (Bi2O2)2+ layer, thereby reducing oxygen vacancy concentration. We successfully synthesized Bi5-xDyxTi3FeO15 (BTF-100xDy) oxide compounds using a solid-state reaction method. Our experimental results demonstrate that dysprosium-substituted Bi5Ti3FeO15 exhibits markedly enhanced piezoelectric performance compared to the unmodified Bi5Ti3FeO15. Specifically, the BTF-5Dy composition achieved a significant increase in the piezoelectric constant (d33) to 23.1 pC/N, which is approximately three times higher than that of the unmodified Bi5Ti3FeO15 (7.1 pC/N). The temperature-dependent measurements of DC electrical resistivity revealed that dysprosium substitution substantially improves the material’s electrical resistivity at elevated temperatures. Additionally, BTF-5Dy exhibited a high TC of 787 °C, a low dielectric loss tanδ (~ 0.38% at 1 MHz), and good thermal stability of electromechanical properties up to 300 °C. These improvements are attributed to lattice distortion and reduced oxygen vacancies. Collectively, these findings suggest that dysprosium-substituted Bi5Ti3FeO15 ceramics hold great promise as high-performance materials for high-temperature piezoelectric applications.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted