{"title":"Machine Learning Applications Enabling Fusion Energy: Recent Developments","authors":"Cristina Rea","doi":"10.1007/s10894-025-00509-z","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last few years, machine learning helped to develop advanced capabilities for fusion energy over a broad range of domains. This includes advanced algorithms to extract information from fusion diagnostics, enhanced algorithms for plasma state estimation and control, accelerated simulation tools to improve predictive capabilities, and expanded modeling capabilities for fusion materials design. This topical collection covers recent developments in machine learning applied research further enabling the path to fusion energy; in particular it covers a wide breadth of fusion subfields – from inertial confinement fusion, to magnetically confined plasma, including high temperature superconducting magnet design and optimization. This editorial summarizes the collection while also providing a critical outlook on how machine learning can be used in the future to accelerate the development of fusion energy as a reliable energy source.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00509-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the last few years, machine learning helped to develop advanced capabilities for fusion energy over a broad range of domains. This includes advanced algorithms to extract information from fusion diagnostics, enhanced algorithms for plasma state estimation and control, accelerated simulation tools to improve predictive capabilities, and expanded modeling capabilities for fusion materials design. This topical collection covers recent developments in machine learning applied research further enabling the path to fusion energy; in particular it covers a wide breadth of fusion subfields – from inertial confinement fusion, to magnetically confined plasma, including high temperature superconducting magnet design and optimization. This editorial summarizes the collection while also providing a critical outlook on how machine learning can be used in the future to accelerate the development of fusion energy as a reliable energy source.
期刊介绍:
The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews.
This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.