Integration of a finger-actuated quantitative drive module for point-of-care blood typing chips

IF 2.5 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Xiaolong Hu, Yurui Lin, Ling Chen, Lifang Duan, Zhichang Du
{"title":"Integration of a finger-actuated quantitative drive module for point-of-care blood typing chips","authors":"Xiaolong Hu,&nbsp;Yurui Lin,&nbsp;Ling Chen,&nbsp;Lifang Duan,&nbsp;Zhichang Du","doi":"10.1007/s10404-025-02844-1","DOIUrl":null,"url":null,"abstract":"<div><p>Although point-of-care testing (POCT) chips offer the advantages of fluid manipulation without external energy and easy portability, they exhibit significant variability in fluid control due to individual operational differences. Therefore, this study developed a finger-actuated quantitative drive module, achieving quantitative fluid driving through its bolt-driven component screwing mechanism, spring return motion, and designed contact point size. The quantitative relationship between its key parameters and fluid-driven volume was elucidated through experiments, providing a theoretical basis for flow control. In addition, we further systematically characterize the consistency of this module’s driving performance. The results indicate that under a single-contact condition, the standard deviation of the single-drive volume for different operators is less than 5%. When using multi-contact parallel control, the maximum volume deviation of each contact is only 0.12 µL, demonstrating good consistency in parallel control. Finally, we integrated the module into our independently developed blood type detection chips and verified its excellent multi-fluid mixing ability through dual color tracing experiments. In double-blind blood type detection experiments, it was able to obtain blood type determination results consistent with traditional test tube methods within 5 min. This work provides an innovative solution for fluid quantitative drive control of POCT chips and demonstrates significant application potential in medical scenarios such as bedside diagnosis and on-site testing.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02844-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Although point-of-care testing (POCT) chips offer the advantages of fluid manipulation without external energy and easy portability, they exhibit significant variability in fluid control due to individual operational differences. Therefore, this study developed a finger-actuated quantitative drive module, achieving quantitative fluid driving through its bolt-driven component screwing mechanism, spring return motion, and designed contact point size. The quantitative relationship between its key parameters and fluid-driven volume was elucidated through experiments, providing a theoretical basis for flow control. In addition, we further systematically characterize the consistency of this module’s driving performance. The results indicate that under a single-contact condition, the standard deviation of the single-drive volume for different operators is less than 5%. When using multi-contact parallel control, the maximum volume deviation of each contact is only 0.12 µL, demonstrating good consistency in parallel control. Finally, we integrated the module into our independently developed blood type detection chips and verified its excellent multi-fluid mixing ability through dual color tracing experiments. In double-blind blood type detection experiments, it was able to obtain blood type determination results consistent with traditional test tube methods within 5 min. This work provides an innovative solution for fluid quantitative drive control of POCT chips and demonstrates significant application potential in medical scenarios such as bedside diagnosis and on-site testing.

集成一个手指驱动的定量驱动模块,用于点护理血型芯片
尽管即时检测(POCT)芯片提供了无需外部能量和易于携带的流体操作优势,但由于个体操作差异,它们在流体控制方面表现出显著的可变性。因此,本研究开发了一种手指驱动的定量驱动模块,通过其螺栓驱动的组件旋紧机构、弹簧复位运动和设计的接触点尺寸来实现定量流体驱动。通过实验阐明了其关键参数与流体驱动体积之间的定量关系,为流动控制提供了理论依据。此外,我们进一步系统地表征了该模块驱动性能的一致性。结果表明,在单触点条件下,不同操作人员的单驱动体积标准差均小于5%。采用多触点并联控制时,每个触点的最大体积偏差仅为0.12µL,并联控制一致性好。最后,我们将该模块集成到自主研发的血型检测芯片中,并通过双色追踪实验验证了其出色的多流体混合能力。在双盲血型检测实验中,5min内即可获得与传统试管法一致的血型测定结果。这项工作为POCT芯片的流体定量驱动控制提供了一种创新的解决方案,在床边诊断和现场测试等医疗场景中具有重要的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信