{"title":"Invariants that are Covering Spaces and their Hopf Algebras","authors":"Ehud Meir","doi":"10.1007/s10468-025-10343-8","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous paper by the author a universal ring of invariants for algebraic structures of a given type was constructed. This ring is a polynomial algebra that is generated by certain trace diagrams. It was shown that this ring admits the structure of a rational positive self adjoint Hopf algebra (abbreviated rational PSH-algebra), and was conjectured that it always admits a lattice that is a PSH-algebra, a structure that was introduced by Zelevinsky. In this paper we solve this conjecture, showing that the universal ring of invariants splits as the tensor product of rational PSH-algebras that are either polynomial algebras in a single variable, or admit a lattice that is a PSH-algebra. We do so by considering diagrams as topological spaces, and using tools from the theory of covering spaces. As an application we derive a formula that connects Kronecker coefficients with finite index subgroups of free groups and representations of their Weyl groups, and a formula for the number of conjugacy classes of finite index subgroup in a finitely generated group that admits a surjective homomorphism onto the group of integers.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 4","pages":"883 - 920"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10343-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10343-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous paper by the author a universal ring of invariants for algebraic structures of a given type was constructed. This ring is a polynomial algebra that is generated by certain trace diagrams. It was shown that this ring admits the structure of a rational positive self adjoint Hopf algebra (abbreviated rational PSH-algebra), and was conjectured that it always admits a lattice that is a PSH-algebra, a structure that was introduced by Zelevinsky. In this paper we solve this conjecture, showing that the universal ring of invariants splits as the tensor product of rational PSH-algebras that are either polynomial algebras in a single variable, or admit a lattice that is a PSH-algebra. We do so by considering diagrams as topological spaces, and using tools from the theory of covering spaces. As an application we derive a formula that connects Kronecker coefficients with finite index subgroups of free groups and representations of their Weyl groups, and a formula for the number of conjugacy classes of finite index subgroup in a finitely generated group that admits a surjective homomorphism onto the group of integers.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.