Behlul Koc-Bilican, Samiha Benarous, Fatih Dogan Koca, Demet Cansaran-Duman, Martin Vinther Sørensen, Ismail Bilican, Murat Kaya
{"title":"Anti-cancer effect of Thymus vulgaris based synthesized gold nanoparticles in giant macroporous silica: impact on MCF-7 breast cancer cells","authors":"Behlul Koc-Bilican, Samiha Benarous, Fatih Dogan Koca, Demet Cansaran-Duman, Martin Vinther Sørensen, Ismail Bilican, Murat Kaya","doi":"10.1007/s41779-025-01164-5","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional cancer therapies, while effective, are frequently associated with significant adverse effects owing to their lack of selectivity, impacting both malignant and healthy cells. To address these challenges, gold nanoparticles (AuNPs) have emerged as a promising platform for targeted drug delivery. Giant macroporous silica (GMS) is a recently developed material, with its drug delivery potential explored in only a single study to date. In this study, gold nanoparticles (AuNPs) synthesized using <i>Thymus vulgaris</i> (garden thyme) extract were incorporated into GMS, forming GMS-AuNPs. Additionally, AuNPs coated with chitosan (AuNPs@CS) were similarly loaded into GMS, resulting in GMS-AuNPs@CS composites. The synthesized materials were characterized through light microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The anti-cancer effects of GMS-AuNPs and GMS-AuNPs@CS were assessed against breast cancer cells using real-time cell analysis. Notably, no cytotoxic effects were observed on MCF-12 A normal breast epithelial cells at any of the tested concentrations. GMS-AuNPs demonstrated a dose- and time-dependent cytotoxic effect on breast cancer cells. These findings suggest that GMS-AuNPs hold promise as a potential therapeutic strategy for breast cancer treatment.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"61 4","pages":"1293 - 1304"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41779-025-01164-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-025-01164-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional cancer therapies, while effective, are frequently associated with significant adverse effects owing to their lack of selectivity, impacting both malignant and healthy cells. To address these challenges, gold nanoparticles (AuNPs) have emerged as a promising platform for targeted drug delivery. Giant macroporous silica (GMS) is a recently developed material, with its drug delivery potential explored in only a single study to date. In this study, gold nanoparticles (AuNPs) synthesized using Thymus vulgaris (garden thyme) extract were incorporated into GMS, forming GMS-AuNPs. Additionally, AuNPs coated with chitosan (AuNPs@CS) were similarly loaded into GMS, resulting in GMS-AuNPs@CS composites. The synthesized materials were characterized through light microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The anti-cancer effects of GMS-AuNPs and GMS-AuNPs@CS were assessed against breast cancer cells using real-time cell analysis. Notably, no cytotoxic effects were observed on MCF-12 A normal breast epithelial cells at any of the tested concentrations. GMS-AuNPs demonstrated a dose- and time-dependent cytotoxic effect on breast cancer cells. These findings suggest that GMS-AuNPs hold promise as a potential therapeutic strategy for breast cancer treatment.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted