ReaxFF molecular dynamics study of mechanochemical degradation of PFPE lubricants on DLC in heat-assisted magnetic recording†

Himanshu Shekhar, Shota Uchiyama, Yuxi Song, Hedong Zhang, Kenji Fukuzawa, Shintaro Itoh and Naoki Azuma
{"title":"ReaxFF molecular dynamics study of mechanochemical degradation of PFPE lubricants on DLC in heat-assisted magnetic recording†","authors":"Himanshu Shekhar, Shota Uchiyama, Yuxi Song, Hedong Zhang, Kenji Fukuzawa, Shintaro Itoh and Naoki Azuma","doi":"10.1039/D5MR00023H","DOIUrl":null,"url":null,"abstract":"<p >Understanding the degradation mechanisms of perfluoropolyether (PFPE) lubricants is critical for the reliability of Heat-Assisted Magnetic Recording (HAMR) systems. In this study, we conducted ReaxFF reactive molecular dynamics simulations to investigate the role of diamond-like carbon (DLC) surfaces in PFPE degradation under confined shear and at elevated temperature. The results show that confined shear plays a more dominant role than temperature, with the decomposition rate constant increasing with shear velocity. PFPE degradation primarily initiates through C–OH bond rupture at end groups, typically after the OH group bonds to the DLC surfaces. Bonded PFPE molecules adopt bridge and loop conformations, both contributing comparably to degradation with increasing shear velocity, with bridges being slightly more sensitive to shear. Our analysis suggests that bridge dissociation is facilitated by shear-induced end-to-end stretching, while loop dissociation is driven by entanglement of conformationally flexible main chains. These insights provide guidance regarding further development of reliable HAMR systems.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 745-755"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d5mr00023h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d5mr00023h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the degradation mechanisms of perfluoropolyether (PFPE) lubricants is critical for the reliability of Heat-Assisted Magnetic Recording (HAMR) systems. In this study, we conducted ReaxFF reactive molecular dynamics simulations to investigate the role of diamond-like carbon (DLC) surfaces in PFPE degradation under confined shear and at elevated temperature. The results show that confined shear plays a more dominant role than temperature, with the decomposition rate constant increasing with shear velocity. PFPE degradation primarily initiates through C–OH bond rupture at end groups, typically after the OH group bonds to the DLC surfaces. Bonded PFPE molecules adopt bridge and loop conformations, both contributing comparably to degradation with increasing shear velocity, with bridges being slightly more sensitive to shear. Our analysis suggests that bridge dissociation is facilitated by shear-induced end-to-end stretching, while loop dissociation is driven by entanglement of conformationally flexible main chains. These insights provide guidance regarding further development of reliable HAMR systems.

Abstract Image

热辅助磁记录中PFPE润滑油在DLC上机械化学降解的ReaxFF分子动力学研究
了解全氟聚醚(PFPE)润滑油的降解机制对于热辅助磁记录(HAMR)系统的可靠性至关重要。在这项研究中,我们进行了ReaxFF反应分子动力学模拟,以研究类金刚石(DLC)表面在受限剪切和高温下对PFPE降解的作用。结果表明:密闭剪切作用大于温度作用,随剪切速度的增加,分解速率常数增大;PFPE的降解主要是通过末端基团的C-OH键断裂开始的,通常是在OH基团与DLC表面结合之后。结合的PFPE分子呈桥状和环状构象,随着剪切速度的增加,这两种构象对降解的作用相当,其中桥状构象对剪切的敏感性略高。我们的分析表明,剪切诱导的端到端拉伸促进了桥解离,而环解离是由构象柔性主链的缠结驱动的。这些见解为进一步开发可靠的HAMR系统提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信