Growth of High Aspect Ratio Wurtzite GaAs Nanowires

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
M. M. Jansen*, W. H. J. Peeters, D. Lamon, M. F. Schouten, M. A. Verheijen and E. P. A. M. Bakkers*, 
{"title":"Growth of High Aspect Ratio Wurtzite GaAs Nanowires","authors":"M. M. Jansen*,&nbsp;W. H. J. Peeters,&nbsp;D. Lamon,&nbsp;M. F. Schouten,&nbsp;M. A. Verheijen and E. P. A. M. Bakkers*,&nbsp;","doi":"10.1021/acs.cgd.5c00312","DOIUrl":null,"url":null,"abstract":"<p >Crystal phase control of III–V semiconductor nanowires grown by the vapor liquid solid mechanism has emerged as a new frontier in nanomaterials in the 2010s. Of particular interest is the ability to grow the metastable wurtzite crystal, which is commercially unavailable in semiconductors such as GaAs and SiGe. The successful growth of wurtzite GaAs nanowires has been demonstrated by precise control of the wetting contact angle of the catalyst particle. However, a recent discovery revealed an inherent limitation, known as the critical length, which restricts the maximum achievable aspect, length-to-diameter, ratio in wurtzite GaAs nanowire below 100. Here, we demonstrate the growth of wurtzite GaAs nanowire above the cirtical length with a stacking fault density of 10 SF/μm and precise crystal phase control down to the monolayer regime using Ga-pulses. The crystal phase control by Ga-pulsing is investigated as a function of pulse duration, frequency and position along the nanowire length. A pulse scheme is developed to stabilize the wurtzite crystal phase for aspect ratios up to nearly 200. This method, involving controlled transitions between wurtzite and zinc blende phases, expands the potential of the GaAs platform to create superlattices in high aspect ratio nanowires.</p><p >We develop a Ga-pulsing method for vapor–liquid–solid growth of wurtzite GaAs nanowires surpassing the critical length limit. The approach yields precise phase control and low stacking fault densities, offering a versatile platform for complex, high-aspect-ratio nanowire heterostructures.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 17","pages":"7105–7111"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.cgd.5c00312","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00312","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Crystal phase control of III–V semiconductor nanowires grown by the vapor liquid solid mechanism has emerged as a new frontier in nanomaterials in the 2010s. Of particular interest is the ability to grow the metastable wurtzite crystal, which is commercially unavailable in semiconductors such as GaAs and SiGe. The successful growth of wurtzite GaAs nanowires has been demonstrated by precise control of the wetting contact angle of the catalyst particle. However, a recent discovery revealed an inherent limitation, known as the critical length, which restricts the maximum achievable aspect, length-to-diameter, ratio in wurtzite GaAs nanowire below 100. Here, we demonstrate the growth of wurtzite GaAs nanowire above the cirtical length with a stacking fault density of 10 SF/μm and precise crystal phase control down to the monolayer regime using Ga-pulses. The crystal phase control by Ga-pulsing is investigated as a function of pulse duration, frequency and position along the nanowire length. A pulse scheme is developed to stabilize the wurtzite crystal phase for aspect ratios up to nearly 200. This method, involving controlled transitions between wurtzite and zinc blende phases, expands the potential of the GaAs platform to create superlattices in high aspect ratio nanowires.

We develop a Ga-pulsing method for vapor–liquid–solid growth of wurtzite GaAs nanowires surpassing the critical length limit. The approach yields precise phase control and low stacking fault densities, offering a versatile platform for complex, high-aspect-ratio nanowire heterostructures.

高纵横比纤锌矿GaAs纳米线的生长
利用气-液-固机制生长的III-V型半导体纳米线的晶相控制是本世纪10年代纳米材料研究的一个新前沿。特别令人感兴趣的是生长亚稳纤锌矿晶体的能力,这在GaAs和SiGe等半导体中是商业上不可用的。通过精确控制催化剂颗粒的润湿接触角,证明了纤锌矿型砷化镓纳米线的成功生长。然而,最近的一项发现揭示了一个固有的限制,即所谓的临界长度,它限制了纤锌矿砷化镓纳米线的最大可实现长度、长径比低于100。在这里,我们展示了在临界长度以上的纤锌矿GaAs纳米线的生长,层错密度为10 SF/μm,并使用ga脉冲精确地将晶体相位控制到单层状态。研究了脉冲时间、脉冲频率和脉冲位置沿纳米线长度方向对晶体相位控制的影响。开发了一种脉冲方案来稳定长宽比接近200的纤锌矿晶体相位。该方法涉及纤锌矿和锌闪锌矿相之间的受控过渡,扩展了GaAs平台在高纵横比纳米线中创建超晶格的潜力。我们开发了一种气-液-固生长超过临界长度限制的纤锌矿砷化镓纳米线的ga脉冲方法。该方法可实现精确的相位控制和低层错密度,为复杂的高纵横比纳米线异质结构提供了一个通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信