Pengtao Liu, Zhao Zhao, Yaqi Tang, Yangyang Zhou, Jie Liu, Kaiqi Xu, Yaxin Chen, Xiaoting Li, Yaru Tang, Li Yang
{"title":"The HY5-NPR1 module governs light-dependent virulence of a plant bacterial pathogen","authors":"Pengtao Liu, Zhao Zhao, Yaqi Tang, Yangyang Zhou, Jie Liu, Kaiqi Xu, Yaxin Chen, Xiaoting Li, Yaru Tang, Li Yang","doi":"10.1016/j.chom.2025.08.007","DOIUrl":null,"url":null,"abstract":"Light is essential for plant development, but its influence on pathogen virulence and immunity remains poorly understood. Here, we found that the <em>Pseudomonas syringae</em> DC3000 type III effector, AvrPtoB, exhibits virulence exclusively upon light exposure. This light-dependent regulation is controlled by the <em>Arabidopsis</em> transcription factor ELONGATED HYPOCOTYL 5 (HY5), a central regulator of photomorphogenesis. AvrPtoB targets HY5 in the nucleus, facilitating its ubiquitination and degradation. Genetic disruption of <em>HY5</em> eliminates susceptibility to AvrPtoB and compromises plant immunity upon light exposure. HY5 enhances immunity by binding promoters of defense-related genes, activating their expression, and stabilizing the transcriptional coregulator NONEXPRESSOR OF PATHOGENESIS-RELATED (PR) GENES 1 (NPR1) by inhibiting its negative regulators NPR3/4. Both HY5-mediated immunity and light-dependent AvrPtoB virulence require NPR1. By contrast, during darkness, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated HY5 degradation suppresses AvrPtoB virulence and HY5-enhanced immunity. These findings elucidate a mechanism in which light modulates bacterial virulence and plant immunity via an HY5-NPR1 module, advancing our understanding of light-pathogen-host interactions.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"50 1","pages":""},"PeriodicalIF":18.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2025.08.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Light is essential for plant development, but its influence on pathogen virulence and immunity remains poorly understood. Here, we found that the Pseudomonas syringae DC3000 type III effector, AvrPtoB, exhibits virulence exclusively upon light exposure. This light-dependent regulation is controlled by the Arabidopsis transcription factor ELONGATED HYPOCOTYL 5 (HY5), a central regulator of photomorphogenesis. AvrPtoB targets HY5 in the nucleus, facilitating its ubiquitination and degradation. Genetic disruption of HY5 eliminates susceptibility to AvrPtoB and compromises plant immunity upon light exposure. HY5 enhances immunity by binding promoters of defense-related genes, activating their expression, and stabilizing the transcriptional coregulator NONEXPRESSOR OF PATHOGENESIS-RELATED (PR) GENES 1 (NPR1) by inhibiting its negative regulators NPR3/4. Both HY5-mediated immunity and light-dependent AvrPtoB virulence require NPR1. By contrast, during darkness, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated HY5 degradation suppresses AvrPtoB virulence and HY5-enhanced immunity. These findings elucidate a mechanism in which light modulates bacterial virulence and plant immunity via an HY5-NPR1 module, advancing our understanding of light-pathogen-host interactions.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.