Becky K.C. Chan, Chu Zhang, Chi Him Poon, Marie H.Y. Lee, Hoi Yee Chu, Bei Wang, Sin-Guang Chen, Helen H.N. Yan, Suet Yi Leung, Alan S.L. Wong
{"title":"A combined enteric neuron-gastric tumor organoid reveals metabolic vulnerabilities in gastric cancer","authors":"Becky K.C. Chan, Chu Zhang, Chi Him Poon, Marie H.Y. Lee, Hoi Yee Chu, Bei Wang, Sin-Guang Chen, Helen H.N. Yan, Suet Yi Leung, Alan S.L. Wong","doi":"10.1016/j.stem.2025.08.006","DOIUrl":null,"url":null,"abstract":"The discrepancy between organoid and immortalized cell line cultures for cancer target discovery remains unclear. Here, our multi-tiered clustered regularly interspaced short palindromic repeats (CRISPR) screens reveal <em>in vivo</em>-relevant metabolic dependencies and synthetic lethal pairs that can be uncovered with tumor organoids but not cell lines or even three-dimensional (3D) spheroids. These screens identify lanosterol synthase and acetyl-coenzyme A (CoA) carboxylase inhibitors as effective treatments that impede xenografted tumor growth in mice. These lipid metabolic inhibitors exhibit nanomolar half-maximal inhibitory concentration (IC<sub>50</sub>) values across diverse human gastric cancer organoids resistant to first-line treatments. Mechanistically, gastric cancer organoids and <em>in vivo</em> tumors exhibit lipid metabolic adaptations not seen in two-dimensional (2D) <em>in vitro</em> cultures. Additionally, enteric neurons modulate lipid metabolism in tumor organoids, altering drug sensitivity by up to two orders of magnitude. A neuron-cocultured CRISPR screen further reveals that acetyl-CoA carboxylase expression determines lanosterol synthase inhibitor efficacy. These findings highlight the critical roles of organoid environment and neuronal interaction in cancer lipid reliance.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"31 1","pages":""},"PeriodicalIF":20.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.08.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The discrepancy between organoid and immortalized cell line cultures for cancer target discovery remains unclear. Here, our multi-tiered clustered regularly interspaced short palindromic repeats (CRISPR) screens reveal in vivo-relevant metabolic dependencies and synthetic lethal pairs that can be uncovered with tumor organoids but not cell lines or even three-dimensional (3D) spheroids. These screens identify lanosterol synthase and acetyl-coenzyme A (CoA) carboxylase inhibitors as effective treatments that impede xenografted tumor growth in mice. These lipid metabolic inhibitors exhibit nanomolar half-maximal inhibitory concentration (IC50) values across diverse human gastric cancer organoids resistant to first-line treatments. Mechanistically, gastric cancer organoids and in vivo tumors exhibit lipid metabolic adaptations not seen in two-dimensional (2D) in vitro cultures. Additionally, enteric neurons modulate lipid metabolism in tumor organoids, altering drug sensitivity by up to two orders of magnitude. A neuron-cocultured CRISPR screen further reveals that acetyl-CoA carboxylase expression determines lanosterol synthase inhibitor efficacy. These findings highlight the critical roles of organoid environment and neuronal interaction in cancer lipid reliance.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.