Surface Mn-Enriched Doping Increasing Local Electron Concentration of Na4Fe3(PO4)2P2O7 Cathodes for Enhanced Sodium Storage

Electron Pub Date : 2025-05-21 DOI:10.1002/elt2.70004
Yukun Xi, Xifei Li, Zongnan Lv, Ningjing Hou, Zihao Yang, Xiaoxue Wang, Dongzhu Liu, Yuhui Xu, Guiqiang Cao, Qinting Jiang, Wenbin Li, Jingjing Wang
{"title":"Surface Mn-Enriched Doping Increasing Local Electron Concentration of Na4Fe3(PO4)2P2O7 Cathodes for Enhanced Sodium Storage","authors":"Yukun Xi,&nbsp;Xifei Li,&nbsp;Zongnan Lv,&nbsp;Ningjing Hou,&nbsp;Zihao Yang,&nbsp;Xiaoxue Wang,&nbsp;Dongzhu Liu,&nbsp;Yuhui Xu,&nbsp;Guiqiang Cao,&nbsp;Qinting Jiang,&nbsp;Wenbin Li,&nbsp;Jingjing Wang","doi":"10.1002/elt2.70004","DOIUrl":null,"url":null,"abstract":"<p>A NASICON-type Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) cathode material was successfully synthesized using a sand grinding-spray drying method. Different doping strategies can impart distinct modifications to materials, with surface Mn-rich doping (SD) being particularly effective. On one hand, the surface enrichment layer can effectively mitigate the volumetric fluctuations of particles, thereby reducing the internal stress and enhancing the cyclic stability. More importantly, the enrichment of the Mn in the particle surface layer provides an increased number of free electrons. This elevates the local electron concentration within the material, fosters greater overlap in the wave functions of electrons, and strengthens the interactions between electrons. The higher energy state of electrons due to increased transition propensity enhances the material's electronic conductivity. As a consequence, the band gap of SD material has decreased from 0.72 eV to 0.45 eV, and the electronic conductivity has increased from 6.0 μS·cm<sup>−1</sup> to 21.8 μS·cm<sup>−1</sup>. The as-optimized SD sample displays both outstanding rate performance (110.8 mAh·g<sup>−1</sup> and 99.0 mAh·g<sup>−1</sup> at 0.1 C and 5 C, respectively) and excellent cycling stability (88.7% of capacity retention after 1500 cycles at 1 C). The study highlights that the choice of doping methods is equally crucial for the performance of NFPP materials.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A NASICON-type Na4Fe3(PO4)2P2O7 (NFPP) cathode material was successfully synthesized using a sand grinding-spray drying method. Different doping strategies can impart distinct modifications to materials, with surface Mn-rich doping (SD) being particularly effective. On one hand, the surface enrichment layer can effectively mitigate the volumetric fluctuations of particles, thereby reducing the internal stress and enhancing the cyclic stability. More importantly, the enrichment of the Mn in the particle surface layer provides an increased number of free electrons. This elevates the local electron concentration within the material, fosters greater overlap in the wave functions of electrons, and strengthens the interactions between electrons. The higher energy state of electrons due to increased transition propensity enhances the material's electronic conductivity. As a consequence, the band gap of SD material has decreased from 0.72 eV to 0.45 eV, and the electronic conductivity has increased from 6.0 μS·cm−1 to 21.8 μS·cm−1. The as-optimized SD sample displays both outstanding rate performance (110.8 mAh·g−1 and 99.0 mAh·g−1 at 0.1 C and 5 C, respectively) and excellent cycling stability (88.7% of capacity retention after 1500 cycles at 1 C). The study highlights that the choice of doping methods is equally crucial for the performance of NFPP materials.

Abstract Image

表面富锰掺杂提高Na4Fe3(PO4)2P2O7阴极的局域电子浓度,增强钠存储
采用砂磨-喷雾干燥法制备了nasiconon型Na4Fe3(PO4)2P2O7 (NFPP)正极材料。不同的掺杂策略可以对材料进行不同的修饰,其中表面富锰掺杂(SD)特别有效。一方面,表面富集层可以有效缓解颗粒的体积波动,从而降低内应力,增强循环稳定性;更重要的是,粒子表层Mn的富集提供了更多的自由电子。这提高了材料内部的局部电子浓度,促进了电子波函数的更大重叠,并加强了电子之间的相互作用。由于跃迁倾向的增加,电子的高能态增强了材料的电子导电性。结果表明,SD材料的带隙从0.72 eV减小到0.45 eV,电导率从6.0 μS·cm−1提高到21.8 μS·cm−1。优化后的SD样品具有出色的倍率性能(0.1℃和5℃时分别为110.8 mAh·g−1和99.0 mAh·g−1)和优异的循环稳定性(1℃下1500次循环后容量保持率为88.7%)。该研究强调,掺杂方法的选择对NFPP材料的性能同样至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信