Characterization of the Spatiotemporal Distribution of Shear Stress and Bedload Flux Within a Mobile, Rippled Bed

IF 3.4 2区 地球科学 Q1 OCEANOGRAPHY
Savannah R. DeVoe, Meagan E. Wengrove, Diane L. Foster, Daniel S. Hagan
{"title":"Characterization of the Spatiotemporal Distribution of Shear Stress and Bedload Flux Within a Mobile, Rippled Bed","authors":"Savannah R. DeVoe,&nbsp;Meagan E. Wengrove,&nbsp;Diane L. Foster,&nbsp;Daniel S. Hagan","doi":"10.1029/2025JC022369","DOIUrl":null,"url":null,"abstract":"<p>Mobile sediment layer dynamics and the distribution of shear stress within mobile fluid-sediment mixtures are not well understood, particularly for oscillatory flows over rippled boundaries. This article provides insight into bed shear stress at and within a mobile, rippled bedform at high spatiotemporal resolution for the purpose of improving estimates of bedload transport. Data from a coupled Large Eddy Simulation (LES) and Discrete Particle Model (DPM) is used to characterize the spatiotemporal distribution of shear stress within the bed. Estimates of stress within the mobile layer are obtained using a new momentum integral method expression for oscillatory flow over mobile, porous, non-planar boundaries that makes no a priori assumptions about the boundary layer shape. Shear stress within the mobile layer and the resulting bedload flux show a strong response to the near-bed flow. Two local maxima occur within the mobile layer shear stress distribution during each half-oscillation period that coincide with near-bed fluid acceleration and the formation of a lee-side ripple vortex. The depth-averaged mobile layer Shields parameter, <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mover>\n <mi>θ</mi>\n <mo>˜</mo>\n </mover>\n <mrow>\n <mi>M</mi>\n <mi>L</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${\\widetilde{\\theta }}_{ML}$</annotation>\n </semantics></math>, obtained by depth-averaging across the mobile layer of grains, is approximately one-half the magnitude of the Shields parameter at the top of the mobile layer, and may serve as a better indicator of bedform motion for rippled beds subjected to oscillatory flow. Findings highlight the implications of the assumed bed elevation on the resulting magnitude and direction of estimated shear stress, as well as discrepancies in the magnitude and phase of bedload flux estimated with existing semi-empirical formulae.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JC022369","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JC022369","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile sediment layer dynamics and the distribution of shear stress within mobile fluid-sediment mixtures are not well understood, particularly for oscillatory flows over rippled boundaries. This article provides insight into bed shear stress at and within a mobile, rippled bedform at high spatiotemporal resolution for the purpose of improving estimates of bedload transport. Data from a coupled Large Eddy Simulation (LES) and Discrete Particle Model (DPM) is used to characterize the spatiotemporal distribution of shear stress within the bed. Estimates of stress within the mobile layer are obtained using a new momentum integral method expression for oscillatory flow over mobile, porous, non-planar boundaries that makes no a priori assumptions about the boundary layer shape. Shear stress within the mobile layer and the resulting bedload flux show a strong response to the near-bed flow. Two local maxima occur within the mobile layer shear stress distribution during each half-oscillation period that coincide with near-bed fluid acceleration and the formation of a lee-side ripple vortex. The depth-averaged mobile layer Shields parameter, θ ˜ M L ${\widetilde{\theta }}_{ML}$ , obtained by depth-averaging across the mobile layer of grains, is approximately one-half the magnitude of the Shields parameter at the top of the mobile layer, and may serve as a better indicator of bedform motion for rippled beds subjected to oscillatory flow. Findings highlight the implications of the assumed bed elevation on the resulting magnitude and direction of estimated shear stress, as well as discrepancies in the magnitude and phase of bedload flux estimated with existing semi-empirical formulae.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

移动波纹床中剪切应力和床质通量的时空分布特征
流动沉积层动力学和流动流体-沉积物混合物中剪切应力的分布尚未得到很好的理解,特别是对于波纹边界上的振荡流动。本文提供了在高时空分辨率下,在一个移动的、波纹状的河床上和河床内的河床剪切应力,以改进对河床输运的估计。利用大涡模拟(LES)和离散粒子模型(DPM)的耦合数据表征了床层内剪切应力的时空分布。利用一种新的动量积分法表达式,对流动、多孔、非平面边界上的振荡流动进行了应力估计,该表达式对边界层形状没有先验假设。活动层内的剪切应力和由此产生的床质通量对近床流有强烈的响应。在每个半振荡周期内,可动层剪切应力分布出现两个局部最大值,与近床流体加速和背风侧波纹涡的形成相吻合。深度平均移动层屏蔽参数θ ~ ML ${\ widdetilde {\theta}}_{ML}$,通过在颗粒移动层上进行深度平均得到的,大约是移动层顶部的Shields参数的一半大小,并且可以作为振荡流作用下波纹床的床型运动的更好指标。研究结果强调了假设的床层高程对估计剪切应力的大小和方向的影响,以及与现有半经验公式估计的床层通量的大小和相位的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信