Statistical Approach to the Free-Energy Diagram of the Nitrogen Reduction Reaction on Mo2C MXene

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Diwakar Singh, Ebrahim Tayyebi, Kai S. Exner
{"title":"Statistical Approach to the Free-Energy Diagram of the Nitrogen Reduction Reaction on Mo2C MXene","authors":"Diwakar Singh,&nbsp;Ebrahim Tayyebi,&nbsp;Kai S. Exner","doi":"10.1002/celc.202500196","DOIUrl":null,"url":null,"abstract":"<p>Accurate free-energy landscapes are essential for understanding electrocatalytic processes, especially those involving proton–coupled electron transfer. While density functional theory (DFT) is widely used to model such reactions, it often introduces significant errors in the computed free energies of gas-phase reference molecules, leading to inconsistencies in the derivation of the free-energy changes of the elementary reaction steps. This study presents and compares different correction schemes to address gas-phase DFT errors. Unlike conventional methods that rely on bond–order–based adjustments, this approach reconstructs the formation free energy of target molecules as a linear combination of theoretically determined formation free energies of carefully selected reference molecules. This framework ensures consistency across the reaction network while avoiding dependence on the bond order. This methodology applies to the nitrogen reduction reaction on Mo<sub>2</sub>C(0001) MXene using dispersion–corrected DFT calculations. The incorporation of gas-phase corrections significantly reshapes the free-energy profile and alters catalytic activity descriptors, including the largest free-energy span of the <i>G</i><sub>max</sub>(<i>U</i>) descriptor. Findings highlight the importance of thermodynamic accuracy in computational electrocatalysis and provide a generalizable framework that improves the reliability of DFT-based predictions across a wide range of electrochemical systems for energy conversion and storage.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500196","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate free-energy landscapes are essential for understanding electrocatalytic processes, especially those involving proton–coupled electron transfer. While density functional theory (DFT) is widely used to model such reactions, it often introduces significant errors in the computed free energies of gas-phase reference molecules, leading to inconsistencies in the derivation of the free-energy changes of the elementary reaction steps. This study presents and compares different correction schemes to address gas-phase DFT errors. Unlike conventional methods that rely on bond–order–based adjustments, this approach reconstructs the formation free energy of target molecules as a linear combination of theoretically determined formation free energies of carefully selected reference molecules. This framework ensures consistency across the reaction network while avoiding dependence on the bond order. This methodology applies to the nitrogen reduction reaction on Mo2C(0001) MXene using dispersion–corrected DFT calculations. The incorporation of gas-phase corrections significantly reshapes the free-energy profile and alters catalytic activity descriptors, including the largest free-energy span of the Gmax(U) descriptor. Findings highlight the importance of thermodynamic accuracy in computational electrocatalysis and provide a generalizable framework that improves the reliability of DFT-based predictions across a wide range of electrochemical systems for energy conversion and storage.

Abstract Image

Abstract Image

Abstract Image

Mo2C MXene上氮还原反应自由能图的统计方法
准确的自由能景观对于理解电催化过程是必不可少的,特别是那些涉及质子耦合电子转移的过程。虽然密度泛函理论(DFT)被广泛用于模拟这类反应,但它经常在计算气相参考分子的自由能时引入重大误差,导致基本反应步骤的自由能变化的推导不一致。本研究提出并比较了解决气相DFT误差的不同校正方案。与依赖键序调整的传统方法不同,该方法将目标分子的形成自由能重构为精心选择的参考分子的理论确定的形成自由能的线性组合。该框架确保了整个反应网络的一致性,同时避免了对键序的依赖。该方法适用于Mo2C(0001) MXene上的氮还原反应,使用分散度校正DFT计算。气相修正的加入显著地重塑了自由能谱并改变了催化活性描述符,包括Gmax(U)描述符的最大自由能跨度。研究结果强调了热力学精度在计算电催化中的重要性,并提供了一个可推广的框架,提高了基于dft的预测在广泛的电化学系统中用于能量转换和存储的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信