Controlling and Understanding the Impact of Closed Pore Size on Sodium Storage in Hard Carbons via Controlled Pyrolysis of Molecular Precursors

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Ulrich Haagen, Seyedrashid Mirmasoomi, Kai Hetze, Sijia Cao, Yan Lu, Konstantin Schutjajew, Martin Oschatz
{"title":"Controlling and Understanding the Impact of Closed Pore Size on Sodium Storage in Hard Carbons via Controlled Pyrolysis of Molecular Precursors","authors":"Ulrich Haagen,&nbsp;Seyedrashid Mirmasoomi,&nbsp;Kai Hetze,&nbsp;Sijia Cao,&nbsp;Yan Lu,&nbsp;Konstantin Schutjajew,&nbsp;Martin Oschatz","doi":"10.1002/celc.202500241","DOIUrl":null,"url":null,"abstract":"<p>Hard carbon is the most widely applied material for sodium-ion battery negative electrodes. Although capacities comparable to those of lithium/graphite can be achieved, the underlying sodium storage mechanisms remain poorly understood. From a simplified perspective, a two-step process is commonly observed: first, sodium adsorbs to the polar sites of the carbon (“sloping region”) and then fills the small voids in the material (“plateau region”). In order to study the impact of the molecular size of precursors on the microstructure of carbon materials and their pore geometry, a systematic series of cyclodextrin-based hard carbons has been synthesized. It is found that the type of precursors used influences the resulting materials’ pore structure, which at higher temperatures can be converted to a closed pore system. This pore conversion enables a large, low-potential sodiation plateau. Indeed, up to 75% of the total capacity is measured at potentials below 0.1 V versus Na<sup>+</sup>/Na. Additionally, the plateau region can be extended by up to 16% by additionally considering reversible capacity below 0 V versus Na<sup>+</sup>/Na, which means quasimetallic sodium can be stabilized within such structural motifs. Finally, gas physisorption measurements are related to charge–discharge data to identify the architecture of pores relevant to energy storage.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500241","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500241","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Hard carbon is the most widely applied material for sodium-ion battery negative electrodes. Although capacities comparable to those of lithium/graphite can be achieved, the underlying sodium storage mechanisms remain poorly understood. From a simplified perspective, a two-step process is commonly observed: first, sodium adsorbs to the polar sites of the carbon (“sloping region”) and then fills the small voids in the material (“plateau region”). In order to study the impact of the molecular size of precursors on the microstructure of carbon materials and their pore geometry, a systematic series of cyclodextrin-based hard carbons has been synthesized. It is found that the type of precursors used influences the resulting materials’ pore structure, which at higher temperatures can be converted to a closed pore system. This pore conversion enables a large, low-potential sodiation plateau. Indeed, up to 75% of the total capacity is measured at potentials below 0.1 V versus Na+/Na. Additionally, the plateau region can be extended by up to 16% by additionally considering reversible capacity below 0 V versus Na+/Na, which means quasimetallic sodium can be stabilized within such structural motifs. Finally, gas physisorption measurements are related to charge–discharge data to identify the architecture of pores relevant to energy storage.

Abstract Image

Abstract Image

Abstract Image

通过分子前体热解控制和理解封闭孔径对硬碳中钠储存的影响
硬碳是钠离子电池负极中应用最广泛的材料。虽然可以实现与锂/石墨相当的容量,但潜在的钠储存机制仍然知之甚少。从简化的角度来看,通常观察到一个两步过程:首先,钠吸附到碳的极性位置(“倾斜区”),然后填充材料中的小空隙(“高原区”)。为了研究前驱体的分子大小对碳材料微观结构和孔隙几何形状的影响,系统地合成了一系列环糊精基硬碳。研究发现,所使用的前驱体的类型会影响所得材料的孔隙结构,在较高的温度下,这些孔隙结构可以转化为封闭的孔隙系统。这种孔隙转换形成了一个大的、低电位的钠化平台。事实上,高达75%的总容量是在低于0.1 V与Na+/Na的电位下测量的。此外,通过额外考虑低于0 V的Na+/Na的可逆容量,平台区域可以延长多达16%,这意味着准金属钠可以稳定在这样的结构基元内。最后,气体物理吸附测量与充放电数据相关联,以确定与储能相关的孔隙结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信