Qinyi Liu, Yan Xu, Jiaxuan He, Xiaoming Tan, Man Zhang, Tao Fang
{"title":"Preparation and performance of light-cured antimicrobial coatings with acrylamide quaternary ammonium salt as antimicrobial agent","authors":"Qinyi Liu, Yan Xu, Jiaxuan He, Xiaoming Tan, Man Zhang, Tao Fang","doi":"10.1007/s11998-025-01086-8","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of dimethylaminopropylmethacrylamide-benzylammonium chloride (QD-BC), a kind of acrylamide quaternary ammonium salt, through the combination of N-dimethylamine propyl methacrylamide and benzyl chloride (BC) is presented in this paper. The structure of QD-BC was analyzed using FTIR, carbon spectrum, mass spectrometry and <sup>1</sup>HNMR spectroscopy. The resulting product was then utilized for the preparation of light-cured antimicrobial coatings. The mechanical properties of the light-cured coatings were evaluated through drawing tests, etc. The antimicrobial efficacy of coatings with varying contents of QD-BC against <i>E. coli</i> and <i>S. aureus</i> was investigated. The results indicate that the coating with the QD-BC content of 7.2% exhibits maximum adhesion strength, reaching 0.87 MPa. Moreover, when the QD-BC content is 6%, the coating displays a hardness value of 5H while maintaining good flexibility throughout all formulations tested. The coating with QD-BC content of 7.5% shows the highest impact strength among all compositions studied. Furthermore, at respective concentrations of 7.5% and 4.2% for the <i>E. coli</i> and <i>S. aureus</i> testing strains, these coatings demonstrate complete antimicrobial activity with exceptional durability.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 5","pages":"1871 - 1879"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-025-01086-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of dimethylaminopropylmethacrylamide-benzylammonium chloride (QD-BC), a kind of acrylamide quaternary ammonium salt, through the combination of N-dimethylamine propyl methacrylamide and benzyl chloride (BC) is presented in this paper. The structure of QD-BC was analyzed using FTIR, carbon spectrum, mass spectrometry and 1HNMR spectroscopy. The resulting product was then utilized for the preparation of light-cured antimicrobial coatings. The mechanical properties of the light-cured coatings were evaluated through drawing tests, etc. The antimicrobial efficacy of coatings with varying contents of QD-BC against E. coli and S. aureus was investigated. The results indicate that the coating with the QD-BC content of 7.2% exhibits maximum adhesion strength, reaching 0.87 MPa. Moreover, when the QD-BC content is 6%, the coating displays a hardness value of 5H while maintaining good flexibility throughout all formulations tested. The coating with QD-BC content of 7.5% shows the highest impact strength among all compositions studied. Furthermore, at respective concentrations of 7.5% and 4.2% for the E. coli and S. aureus testing strains, these coatings demonstrate complete antimicrobial activity with exceptional durability.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.