Transcriptional reprogramming of Novacetimonas hansenii SI1 during growth on glycerol

IF 4.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Małgorzata Wlaźlak, Izabela Cielecka, Maurycy Daroch
{"title":"Transcriptional reprogramming of Novacetimonas hansenii SI1 during growth on glycerol","authors":"Małgorzata Wlaźlak,&nbsp;Izabela Cielecka,&nbsp;Maurycy Daroch","doi":"10.1007/s00253-025-13583-2","DOIUrl":null,"url":null,"abstract":"<p>Bacterial nanocellulose (BNC) is a valuable biopolymer with immense potential in various sectors of biotechnology. However, large-scale production is hindered by low yields and high costs. Glycerol is an inexpensive and widely available carbon source for BNC biosynthesis, as it is a by-product of the biofuel industry. Compared to glucose, this polyol enhances BNC yields of <i>Novacetimonas hansenii</i> SI1 and related strains. This study investigates transcriptomic changes in <i>N. hansenii</i> SI1 after switching from glucose to glycerol using RNA-seq. The results reveal metabolic reprogramming, including upregulation of genes involved in glycerol uptake and catabolism, gluconeogenesis, the pentose phosphate pathway, and the Entner–Doudoroff pathway. Glycerol metabolism induces oxidative stress, evidenced by elevated expression of antioxidant enzymes, repair proteins, and metal ion homeostasis systems. Additionally, pathways such as riboflavin biosynthesis, methionine salvage, and sulphur assimilation are upregulated to mitigate oxidative damage. Increased oxidative conditions likely stimulate c-di-GMP synthesis, activating cellulose synthase and promoting BNC production. Furthermore, the acetan-like polymer biosynthetic pathway is significantly induced, further enhancing BNC yield. These findings expand our understanding of glycerol utilisation in BNC production, supporting cost-efficient and eco-friendly processes for maximising biopolymer exploitation.</p><p>• <i>Growth on glycerol remodels central carbohydrate metabolism</i></p><p>• <i>Glycerol metabolism induces oxidative stress</i></p><p>• <i>Acetan-like biosynthesis and posttranslational effects stimulate BNC production</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13583-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13583-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial nanocellulose (BNC) is a valuable biopolymer with immense potential in various sectors of biotechnology. However, large-scale production is hindered by low yields and high costs. Glycerol is an inexpensive and widely available carbon source for BNC biosynthesis, as it is a by-product of the biofuel industry. Compared to glucose, this polyol enhances BNC yields of Novacetimonas hansenii SI1 and related strains. This study investigates transcriptomic changes in N. hansenii SI1 after switching from glucose to glycerol using RNA-seq. The results reveal metabolic reprogramming, including upregulation of genes involved in glycerol uptake and catabolism, gluconeogenesis, the pentose phosphate pathway, and the Entner–Doudoroff pathway. Glycerol metabolism induces oxidative stress, evidenced by elevated expression of antioxidant enzymes, repair proteins, and metal ion homeostasis systems. Additionally, pathways such as riboflavin biosynthesis, methionine salvage, and sulphur assimilation are upregulated to mitigate oxidative damage. Increased oxidative conditions likely stimulate c-di-GMP synthesis, activating cellulose synthase and promoting BNC production. Furthermore, the acetan-like polymer biosynthetic pathway is significantly induced, further enhancing BNC yield. These findings expand our understanding of glycerol utilisation in BNC production, supporting cost-efficient and eco-friendly processes for maximising biopolymer exploitation.

Growth on glycerol remodels central carbohydrate metabolism

Glycerol metabolism induces oxidative stress

Acetan-like biosynthesis and posttranslational effects stimulate BNC production

汉斯芽胞杆菌SI1在甘油上生长过程中的转录重编程
细菌纳米纤维素(BNC)是一种有价值的生物聚合物,在生物技术的各个领域具有巨大的潜力。然而,低产量和高成本阻碍了大规模生产。甘油是生物燃料工业的副产品,是一种廉价且广泛用于BNC生物合成的碳源。与葡萄糖相比,该多元醇可提高汉斯新乙酰单胞菌SI1及其相关菌株的BNC产量。本研究利用RNA-seq技术研究了N. hansenii SI1从葡萄糖转换为甘油后的转录组学变化。结果显示代谢重编程,包括参与甘油摄取和分解代谢、糖异生、戊糖磷酸途径和enterner - doudoroff途径的基因上调。甘油代谢诱导氧化应激,其证据是抗氧化酶、修复蛋白和金属离子稳态系统的表达升高。此外,核黄素生物合成、蛋氨酸回收和硫同化等途径被上调以减轻氧化损伤。增加的氧化条件可能刺激c-二gmp合成,激活纤维素合酶并促进BNC的产生。此外,乙酰类聚合物的生物合成途径被显著诱导,进一步提高了BNC的产量。这些发现扩大了我们对甘油在BNC生产中的利用的理解,支持成本效益和生态友好的工艺,以最大限度地利用生物聚合物。•生长在甘油上重塑中央碳水化合物代谢•甘油代谢诱导氧化应激•乙酰类生物合成和翻译后效应刺激BNC的产生
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信