The CYP152-family P450 enzyme CypC of Bacillus subtilis converts non-natural substrates in plasma-driven biocatalysis

IF 4.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tim Dirks, Sabrina Klopsch, Davina Stoesser, Sophie Desdemona Trenkle, Abdulkadir Yayci, Steffen Schüttler, Judith Golda, Julia Elisabeth Bandow
{"title":"The CYP152-family P450 enzyme CypC of Bacillus subtilis converts non-natural substrates in plasma-driven biocatalysis","authors":"Tim Dirks,&nbsp;Sabrina Klopsch,&nbsp;Davina Stoesser,&nbsp;Sophie Desdemona Trenkle,&nbsp;Abdulkadir Yayci,&nbsp;Steffen Schüttler,&nbsp;Judith Golda,&nbsp;Julia Elisabeth Bandow","doi":"10.1007/s00253-025-13568-1","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma-driven biocatalysis utilizes in situ H<sub>2</sub>O<sub>2</sub> production by atmospheric pressure plasmas to drive H<sub>2</sub>O<sub>2</sub>-dependent enzymatic reactions. Having previously established plasma-driven biocatalysis using recombinant unspecific peroxygenase from <i>Agrocybe aegerita</i> (r<i>Aae</i>UPO) to produce (<i>R</i>)-1-phenylethanol from ethylbenzene, we here employed CypC from <i>Bacillus subtilis</i> 168 (synonyms: YbdT, P450BSβ), an integral enzyme of surfactin and fengycin biosynthesis. CypC naturally hydroxylates medium and long-chain carboxylic acids. With short-chain carboxylic acids as decoy molecules, it also converts non-natural substrates such as ethylbenzene. We optimized production and heme loading of CypC and established guaiacol and ABTS-based reactions to assess compatibility of CypC with plasma-driven biocatalysis regarding temperature and H<sub>2</sub>O<sub>2</sub> operating windows. With heptanoic acid as the decoy molecule and H<sub>2</sub>O<sub>2</sub> from stock solution, guaiacol and ABTS conversion yielded 18.28 and 21.13 nmol product min<sup>−1</sup> nmol<sup>−1</sup><sub>CypC</sub>, respectively. We then supplied H<sub>2</sub>O<sub>2</sub> using a capillary plasma jet operated with 1280 ppm H<sub>2</sub>O in helium to convert ethylbenzene with immobilized CypC in a rotating bed reactor (5 ml reaction volume). After 120 min run time, a turnover number (TON) of 18.82 mol<sub>(<i>R</i>)-1-PhOl</sub> mol<sup>−1</sup><sub>CypC</sub> was reached, demonstrating that plasma-driven biocatalysis can be extended to H<sub>2</sub>O<sub>2</sub>-dependent enzymes beyond r<i>Aae</i>UPO to expand the product range.\n</p></div>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13568-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13568-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma-driven biocatalysis utilizes in situ H2O2 production by atmospheric pressure plasmas to drive H2O2-dependent enzymatic reactions. Having previously established plasma-driven biocatalysis using recombinant unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) to produce (R)-1-phenylethanol from ethylbenzene, we here employed CypC from Bacillus subtilis 168 (synonyms: YbdT, P450BSβ), an integral enzyme of surfactin and fengycin biosynthesis. CypC naturally hydroxylates medium and long-chain carboxylic acids. With short-chain carboxylic acids as decoy molecules, it also converts non-natural substrates such as ethylbenzene. We optimized production and heme loading of CypC and established guaiacol and ABTS-based reactions to assess compatibility of CypC with plasma-driven biocatalysis regarding temperature and H2O2 operating windows. With heptanoic acid as the decoy molecule and H2O2 from stock solution, guaiacol and ABTS conversion yielded 18.28 and 21.13 nmol product min−1 nmol−1CypC, respectively. We then supplied H2O2 using a capillary plasma jet operated with 1280 ppm H2O in helium to convert ethylbenzene with immobilized CypC in a rotating bed reactor (5 ml reaction volume). After 120 min run time, a turnover number (TON) of 18.82 mol(R)-1-PhOl mol−1CypC was reached, demonstrating that plasma-driven biocatalysis can be extended to H2O2-dependent enzymes beyond rAaeUPO to expand the product range.

枯草芽孢杆菌的cyp152家族P450酶CypC在血浆驱动的生物催化中转化非天然底物
等离子体驱动生物催化利用常压等离子体原位产生H2O2来驱动H2O2依赖性酶促反应。之前已经建立了血浆驱动的生物催化技术,利用来自Agrocybe aegerita (rAaeUPO)的重组非特异性过氧酶从乙苯中生产(R)-1-苯乙醇,我们在这里使用来自枯草芽孢杆菌168的CypC (YbdT, P450BSβ),一种表面素和风霉素生物合成的整合酶。CypC天然羟化中链和长链羧酸。以短链羧酸作为诱饵分子,它还能转化非天然底物,如乙苯。我们优化了CypC的生产和血红素负载,并建立了愈创木酚和abts为基础的反应,以评估CypC在温度和H2O2操作窗口下与血浆驱动生物催化的相容性。以庚酸为诱饵分子,以原液中的H2O2为诱饵,愈创木酚和ABTS的转化率分别为18.28和21.13 nmol,产物min−1 nmol−1CypC。然后,我们使用毛细管等离子体射流在1280 ppm H2O的氦气中提供H2O2,在旋转床反应器(5 ml反应体积)中将乙苯与固定化的CypC转化。运行120 min后,达到18.82 mol(R)-1-PhOl mol−1CypC的周转数(TON),表明等离子体驱动的生物催化可以扩展到rAaeUPO以外的h2o2依赖性酶,从而扩大了产品范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信