A note on Reichenbach’s common cause completeness

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Dominika Burešová
{"title":"A note on Reichenbach’s common cause completeness","authors":"Dominika Burešová","doi":"10.1007/s10773-025-06089-0","DOIUrl":null,"url":null,"abstract":"<div><p>Common cause completeness (CCC) is a philosophical principle that asserts that if we consider two positively correlated events, then it evokes a common cause event. The principle is due to H. Reichenbach and has mostly been studied in Boolean algebras and orthomodular lattices (quantum logics). The results published so far bring about a question of whether there is a small (countable) Boolean algebra with CCC. In this note, we construct such a Boolean algebra. Since finite Boolean algebras can satisfy CCC only trivially, this example is a smallest possible meaningful example.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06089-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Common cause completeness (CCC) is a philosophical principle that asserts that if we consider two positively correlated events, then it evokes a common cause event. The principle is due to H. Reichenbach and has mostly been studied in Boolean algebras and orthomodular lattices (quantum logics). The results published so far bring about a question of whether there is a small (countable) Boolean algebra with CCC. In this note, we construct such a Boolean algebra. Since finite Boolean algebras can satisfy CCC only trivially, this example is a smallest possible meaningful example.

关于莱辛巴赫公因完备性的注解
共同原因完备性(CCC)是一个哲学原则,它断言如果我们考虑两个正相关的事件,那么它就会引起一个共同原因事件。该原理是由H. Reichenbach提出的,目前主要在布尔代数和正模格(量子逻辑)中进行研究。迄今为止发表的结果带来了一个问题,即是否存在一个具有CCC的小(可数)布尔代数。在本文中,我们构造这样一个布尔代数。由于有限布尔代数只能平凡地满足CCC,所以这个例子是一个最小的可能有意义的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信