Performance analysis of SiGe source based heterojunction TFET biosensor for improved sensitivity

IF 1.4 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Irfan Ahmad Pindoo, Sanjeet Kumar Sinha, Sweta Chander
{"title":"Performance analysis of SiGe source based heterojunction TFET biosensor for improved sensitivity","authors":"Irfan Ahmad Pindoo,&nbsp;Sanjeet Kumar Sinha,&nbsp;Sweta Chander","doi":"10.1007/s10470-025-02479-w","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a novel SiGe-source-based heterojunction tunnel field-effect transistor (TFET) biosensor that incorporates a nanogap dielectric cavity beneath the gate and a hetero-dielectric BOX (HDBOX) structure for ultra-sensitive, label-free detection of both neutral and charged biomolecules. The proposed device architecture leverages a low-bandgap SiGe source to enhance band-to-band tunneling (BTBT) efficiency and utilizes dielectric modulation in the nanogap cavity to enable electrostatic coupling with immobilized biomolecules. The sensor exploits distinct detection mechanisms—dielectric constant variation for neutral biomolecules and combined dielectric and charge-field modulation for charged species—thereby achieving a comprehensive detection capability. Extensive TCAD simulations, calibrated against experimental TFET data, were conducted using Kane’s BTBT model, Lombardi mobility, Fermi–Dirac statistics, and SRH recombination, under room temperature conditions. The device demonstrates a high ON/OFF current ratio of 1.947 × 10<sup>8</sup>, a steep subthreshold slope of 28.57 mV/decade, and a maximum current-based sensitivity (SID) of 1.548 × 10<sup>8</sup> for a dielectric modulation range of κ = 1 to 26. Compared to state-of-the-art DM-TFET and PNPN-TFET biosensors, the proposed design exhibits significantly improved sensitivity, lower off-state leakage (~ 10<sup>–14</sup> A), and reduced process complexity. While this study is simulation-based, the device structure employs CMOS-compatible materials and fabrication techniques, paving the way for future experimental validation. These results position the HDBOX TFET biosensor as a promising candidate for real-time, low-power, and label-free biomedical diagnostics.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02479-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel SiGe-source-based heterojunction tunnel field-effect transistor (TFET) biosensor that incorporates a nanogap dielectric cavity beneath the gate and a hetero-dielectric BOX (HDBOX) structure for ultra-sensitive, label-free detection of both neutral and charged biomolecules. The proposed device architecture leverages a low-bandgap SiGe source to enhance band-to-band tunneling (BTBT) efficiency and utilizes dielectric modulation in the nanogap cavity to enable electrostatic coupling with immobilized biomolecules. The sensor exploits distinct detection mechanisms—dielectric constant variation for neutral biomolecules and combined dielectric and charge-field modulation for charged species—thereby achieving a comprehensive detection capability. Extensive TCAD simulations, calibrated against experimental TFET data, were conducted using Kane’s BTBT model, Lombardi mobility, Fermi–Dirac statistics, and SRH recombination, under room temperature conditions. The device demonstrates a high ON/OFF current ratio of 1.947 × 108, a steep subthreshold slope of 28.57 mV/decade, and a maximum current-based sensitivity (SID) of 1.548 × 108 for a dielectric modulation range of κ = 1 to 26. Compared to state-of-the-art DM-TFET and PNPN-TFET biosensors, the proposed design exhibits significantly improved sensitivity, lower off-state leakage (~ 10–14 A), and reduced process complexity. While this study is simulation-based, the device structure employs CMOS-compatible materials and fabrication techniques, paving the way for future experimental validation. These results position the HDBOX TFET biosensor as a promising candidate for real-time, low-power, and label-free biomedical diagnostics.

基于SiGe源的异质结TFET生物传感器的性能分析
这项工作提出了一种新型的基于硅锗源的异质结隧道场效应晶体管(ttfet)生物传感器,该传感器在栅极下集成了一个纳米间隙介电腔和一个异质介电盒(HDBOX)结构,用于超灵敏、无标记检测中性和带电生物分子。所提出的器件架构利用低带隙SiGe源来提高带对带隧道(BTBT)效率,并利用纳米隙腔中的介电调制来实现与固定化生物分子的静电耦合。该传感器利用独特的检测机制——中性生物分子的介电常数变化和带电物质的介电和电荷场调制相结合——从而实现了全面的检测能力。在室温条件下,利用Kane的tbbt模型、Lombardi迁移率、Fermi-Dirac统计量和SRH重组,根据实验数据进行了大量的TCAD模拟。该器件具有1.947 × 108的高开/关电流比,28.57 mV/ 10的陡亚阈值斜率,在介电调制范围κ = 1至26时,最大电流灵敏度(SID)为1.548 × 108。与最先进的DM-TFET和PNPN-TFET生物传感器相比,所提出的设计显着提高了灵敏度,降低了关闭状态泄漏(~ 10-14 A),并降低了工艺复杂性。虽然这项研究是基于仿真的,但该器件结构采用了cmos兼容材料和制造技术,为未来的实验验证铺平了道路。这些结果使HDBOX TFET生物传感器成为实时、低功耗和无标签生物医学诊断的有前途的候选产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信