Developing solid oxide electrolysis cells for CO2 conversion: A critical power-to-X approach

IF 6.2 4区 工程技术 Q3 ENERGY & FUELS
Yuhui Jin, Fengchao Li, Yun Zheng, Wenqiang Zhang, Shufan Wang, Wei Yan, Bo Yu, Jiujun Zhang
{"title":"Developing solid oxide electrolysis cells for CO2 conversion: A critical power-to-X approach","authors":"Yuhui Jin,&nbsp;Fengchao Li,&nbsp;Yun Zheng,&nbsp;Wenqiang Zhang,&nbsp;Shufan Wang,&nbsp;Wei Yan,&nbsp;Bo Yu,&nbsp;Jiujun Zhang","doi":"10.1007/s11708-025-1012-6","DOIUrl":null,"url":null,"abstract":"<div><p>The substitution of traditional fossil fuels with renewable energy sources is a crucial endeavor for achieving carbon neutrality targets. However, the intermittency of solar, wind, and other renewables poses significant challenges to the power grid. Power-to-X (P2X) technologies play an essential role in enabling the efficient consumption of renewable energy. High-temperature solid oxide electrolysis cells (SOECs) to convert CO<sub>2</sub> offer a promising method for CO<sub>2</sub> conversion, allowing renewable electricity to be stored in chemical form and facilitating the resourceful utilization of carbon resources. In this paper, the mechanism of CO<sub>2</sub> reduction through SOECs is reviewed, two pathways for converting CO<sub>2</sub> to chemicals via SOECs are summarized, and the current markets and manufacturers of SOECs are elucidated. Based on this discussion and analysis, the main challenges and development directions for the large-scale application of SOECs in CO<sub>2</sub> conversion are further proposed.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 4","pages":"419 - 434"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-1012-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The substitution of traditional fossil fuels with renewable energy sources is a crucial endeavor for achieving carbon neutrality targets. However, the intermittency of solar, wind, and other renewables poses significant challenges to the power grid. Power-to-X (P2X) technologies play an essential role in enabling the efficient consumption of renewable energy. High-temperature solid oxide electrolysis cells (SOECs) to convert CO2 offer a promising method for CO2 conversion, allowing renewable electricity to be stored in chemical form and facilitating the resourceful utilization of carbon resources. In this paper, the mechanism of CO2 reduction through SOECs is reviewed, two pathways for converting CO2 to chemicals via SOECs are summarized, and the current markets and manufacturers of SOECs are elucidated. Based on this discussion and analysis, the main challenges and development directions for the large-scale application of SOECs in CO2 conversion are further proposed.

开发用于二氧化碳转换的固体氧化物电解电池:一种关键的功率- x方法
用可再生能源替代传统化石燃料是实现碳中和目标的关键努力。然而,太阳能、风能和其他可再生能源的间歇性给电网带来了重大挑战。P2X (Power-to-X)技术在实现可再生能源的高效使用方面发挥着至关重要的作用。高温固体氧化物电解电池(SOECs)转化CO2为CO2转化提供了一种很有前途的方法,使可再生电力以化学形式储存,便于碳资源的资源化利用。本文综述了soec减少CO2的机理,总结了soec将CO2转化为化学品的两种途径,并对目前soec的市场和制造商进行了阐述。在此基础上,进一步提出了soec在CO2转化中大规模应用面临的主要挑战和发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信