Efficient electrochemical methane coupling enabled by stabilized oxygen species during oxygen evolution in a solid oxide electrolyzer integrated with CO2 electrolysis

IF 6.2 4区 工程技术 Q3 ENERGY & FUELS
Chunsong Li, Lingxiu Li, Fan Bai, Hui Gao, Yunzhu Liu, Zhongyuan Liu, Shixian Zhang, Yuhui Jin, Wenxi Ji, Longgui Zhang, Yifeng Li, Bo Yu
{"title":"Efficient electrochemical methane coupling enabled by stabilized oxygen species during oxygen evolution in a solid oxide electrolyzer integrated with CO2 electrolysis","authors":"Chunsong Li,&nbsp;Lingxiu Li,&nbsp;Fan Bai,&nbsp;Hui Gao,&nbsp;Yunzhu Liu,&nbsp;Zhongyuan Liu,&nbsp;Shixian Zhang,&nbsp;Yuhui Jin,&nbsp;Wenxi Ji,&nbsp;Longgui Zhang,&nbsp;Yifeng Li,&nbsp;Bo Yu","doi":"10.1007/s11708-025-1016-2","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical oxidative coupling of methane (EOCM), integrated with CO<sub>2</sub> electrolysis enabled by high-temperature electrolysis technology, represents a promising pathway for methane utilization and carbon neutrality. However, progress in methane activation remains hindered by low C<sub>2</sub> product selectivity and limited reaction activity, primarily due to the lack of efficient and stable catalysts and rational design strategies. A critical focus of current research is the development of catalysts capable of stabilizing reactive oxygen species to facilitate C-H bond activation and subsequent C-C bond formation. Herein, an easily fabricated composite electrode consisting of perovskite La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3-<i>γ</i></sub> and Ce-Mn-W materials with (Ce<sub>0.90</sub>Gd<sub>0.10</sub>)O<sub>1.95</sub> as the support was developed, demonstrating efficient activate methane activation. Combined theoretical and experimental investigations reveal that the designed composite electrode stabilizes active oxygen species during the oxygen evolution reaction (OER) while exhibiting superior methane adsorption capability. This design, leveraging oxygen species engineering and interfacial synergy, significantly enhances electrochemical methane coupling efficiency, establishing a strategic framework for advancing high-performance catalyst development.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 4","pages":"521 - 533"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-1016-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical oxidative coupling of methane (EOCM), integrated with CO2 electrolysis enabled by high-temperature electrolysis technology, represents a promising pathway for methane utilization and carbon neutrality. However, progress in methane activation remains hindered by low C2 product selectivity and limited reaction activity, primarily due to the lack of efficient and stable catalysts and rational design strategies. A critical focus of current research is the development of catalysts capable of stabilizing reactive oxygen species to facilitate C-H bond activation and subsequent C-C bond formation. Herein, an easily fabricated composite electrode consisting of perovskite La0.6Sr0.4MnO3-γ and Ce-Mn-W materials with (Ce0.90Gd0.10)O1.95 as the support was developed, demonstrating efficient activate methane activation. Combined theoretical and experimental investigations reveal that the designed composite electrode stabilizes active oxygen species during the oxygen evolution reaction (OER) while exhibiting superior methane adsorption capability. This design, leveraging oxygen species engineering and interfacial synergy, significantly enhances electrochemical methane coupling efficiency, establishing a strategic framework for advancing high-performance catalyst development.

在固体氧化物电解槽与二氧化碳电解集成的析氧过程中,稳定的氧使有效的电化学甲烷耦合成为可能
甲烷的电化学氧化偶联(EOCM)与高温电解技术实现的二氧化碳电解相结合,为甲烷利用和碳中和提供了一条有前景的途径。然而,由于缺乏高效稳定的催化剂和合理的设计策略,甲烷活化的进展仍然受到C2产物选择性低和反应活性有限的阻碍。目前研究的一个关键焦点是开发能够稳定活性氧的催化剂,以促进C-H键的激活和随后的C-C键的形成。本文以钙钛矿La0.6Sr0.4MnO3-γ和Ce-Mn-W材料为材料,以(Ce0.90Gd0.10)O1.95为载体,制备了一种易于制备的复合电极,具有高效的活化甲烷活性。理论和实验相结合的研究表明,所设计的复合电极在析氧反应(OER)中稳定了活性氧,同时表现出优异的甲烷吸附能力。该设计利用氧组分工程和界面协同作用,显著提高了电化学甲烷偶联效率,为推进高性能催化剂的开发建立了战略框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信