Lingfeng Chen;Panhe Hu;Zhiliang Pan;Qi Liu;Shuanghui Zhang;Zhen Liu
{"title":"Large Language Models Can Achieve Explainable and Training-Free One-Shot HRRP ATR","authors":"Lingfeng Chen;Panhe Hu;Zhiliang Pan;Qi Liu;Shuanghui Zhang;Zhen Liu","doi":"10.1109/LSP.2025.3598220","DOIUrl":null,"url":null,"abstract":"This letter introduces a pioneering, training-free and explainable framework for High-Resolution Range Profile (HRRP) automatic target recognition (ATR) utilizing large-scale pre-trained Large Language Models (LLMs). Diverging from conventional methods requiring extensive task-specific training or fine-tuning, our approach converts one-dimensional HRRP signals into textual scattering center representations. Prompts are designed to align LLMs’ semantic space for ATR via few-shot in-context learning, effectively leveraging its vast pre-existing knowledge without any parameter update.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3395-3399"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11122886/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter introduces a pioneering, training-free and explainable framework for High-Resolution Range Profile (HRRP) automatic target recognition (ATR) utilizing large-scale pre-trained Large Language Models (LLMs). Diverging from conventional methods requiring extensive task-specific training or fine-tuning, our approach converts one-dimensional HRRP signals into textual scattering center representations. Prompts are designed to align LLMs’ semantic space for ATR via few-shot in-context learning, effectively leveraging its vast pre-existing knowledge without any parameter update.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.