Large Language Models Can Achieve Explainable and Training-Free One-Shot HRRP ATR

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lingfeng Chen;Panhe Hu;Zhiliang Pan;Qi Liu;Shuanghui Zhang;Zhen Liu
{"title":"Large Language Models Can Achieve Explainable and Training-Free One-Shot HRRP ATR","authors":"Lingfeng Chen;Panhe Hu;Zhiliang Pan;Qi Liu;Shuanghui Zhang;Zhen Liu","doi":"10.1109/LSP.2025.3598220","DOIUrl":null,"url":null,"abstract":"This letter introduces a pioneering, training-free and explainable framework for High-Resolution Range Profile (HRRP) automatic target recognition (ATR) utilizing large-scale pre-trained Large Language Models (LLMs). Diverging from conventional methods requiring extensive task-specific training or fine-tuning, our approach converts one-dimensional HRRP signals into textual scattering center representations. Prompts are designed to align LLMs’ semantic space for ATR via few-shot in-context learning, effectively leveraging its vast pre-existing knowledge without any parameter update.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3395-3399"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11122886/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces a pioneering, training-free and explainable framework for High-Resolution Range Profile (HRRP) automatic target recognition (ATR) utilizing large-scale pre-trained Large Language Models (LLMs). Diverging from conventional methods requiring extensive task-specific training or fine-tuning, our approach converts one-dimensional HRRP signals into textual scattering center representations. Prompts are designed to align LLMs’ semantic space for ATR via few-shot in-context learning, effectively leveraging its vast pre-existing knowledge without any parameter update.
大型语言模型可以实现可解释且无需训练的一次性HRRP ATR
这封信介绍了一个开创性的,无需训练和可解释的框架,用于高分辨率距离轮廓(HRRP)自动目标识别(ATR),利用大规模预训练的大型语言模型(llm)。与需要大量特定任务训练或微调的传统方法不同,我们的方法将一维HRRP信号转换为文本散射中心表示。提示的目的是通过少量的上下文学习来调整llm的ATR语义空间,有效地利用其大量的预先存在的知识,而无需任何参数更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信