Stability and averaging principle for distribution dependent SDEs driven by G-Brownian motion

IF 1.2 3区 数学 Q1 MATHEMATICS
Wensheng Yin , Yong Ren , Kaile Cao
{"title":"Stability and averaging principle for distribution dependent SDEs driven by G-Brownian motion","authors":"Wensheng Yin ,&nbsp;Yong Ren ,&nbsp;Kaile Cao","doi":"10.1016/j.jmaa.2025.130024","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the asymptotic behavior for distribution dependent stochastic differential equations driven by <em>G</em>-Brownian motion (<em>G</em>-SDEs). Under Lipschitz condition, we study exponentially second-moment ultimate boundedness, stability and averaging principle. Under non-Lipschitz condition, we first prove the existence and uniqueness for distribution dependent <em>G</em>-SDEs by adopting Carathéodory approximation approach. In particular, the fast time oscillating distribution dependent <em>G</em>-SDEs is treated and its solution can be approximated by the averaged distribution dependent <em>G</em>-SDEs under averaging condition. Additionally, two illustrative examples are provided to validate the averaged-distribution-dependent <em>G</em>-SDEs.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130024"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008054","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the asymptotic behavior for distribution dependent stochastic differential equations driven by G-Brownian motion (G-SDEs). Under Lipschitz condition, we study exponentially second-moment ultimate boundedness, stability and averaging principle. Under non-Lipschitz condition, we first prove the existence and uniqueness for distribution dependent G-SDEs by adopting Carathéodory approximation approach. In particular, the fast time oscillating distribution dependent G-SDEs is treated and its solution can be approximated by the averaged distribution dependent G-SDEs under averaging condition. Additionally, two illustrative examples are provided to validate the averaged-distribution-dependent G-SDEs.
g -布朗运动驱动下分布相关SDEs的稳定性和平均原理
研究了由g -布朗运动驱动的分布相关随机微分方程的渐近性质。在Lipschitz条件下,研究了指数二阶矩极限有界性、稳定性和平均原理。在非lipschitz条件下,我们首先采用carathacimodory逼近方法证明了分布相关G-SDEs的存在唯一性。特别地,我们处理了快速时间振荡分布相关的G-SDEs,它的解可以用平均条件下的平均分布相关的G-SDEs来逼近。此外,还提供了两个说明性示例来验证平均分布相关的G-SDEs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信