Comparison study of Selective Laser melted Ti6Al4V and Ti6Al4V-8Ta Alloys: Mechanical & corrosion properties

IF 2 Q3 ENGINEERING, MANUFACTURING
Anel Zhumabekova, Asma Perveen, Didier Talamona
{"title":"Comparison study of Selective Laser melted Ti6Al4V and Ti6Al4V-8Ta Alloys: Mechanical & corrosion properties","authors":"Anel Zhumabekova,&nbsp;Asma Perveen,&nbsp;Didier Talamona","doi":"10.1016/j.mfglet.2025.06.095","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the use of Selective Laser Melting (SLM) to enhance the mechanical and corrosion properties of titanium-tantalum (Ti6Al4V-8Ta) alloys for biomedical applications. The study addresses the limitations of the widely used Ti6Al4V alloy, such as potential aluminum and vanadium toxicity, by incorporating tantalum (Ta), which offers superior biocompatibility and corrosion resistance. Comprehensive characterization is performed using Scanning Electron Microscopy (SEM) to analyze the chemical composition and particle morphology, while particle size distribution is measured using a Mastersizer. Mechanical testing reveals that the Ti6Al4V-8Ta alloy exhibits slightly reduced mechanical properties compared to Ti6Al4V, with an ultimate tensile strength (UTS) of 1216.73 ± 3.20 MPa, yield strength (YS) of 1058.67 ± 24.49 MPa, and elastic modulus of 99.64 ± 5.52 GPa. In comparison, Ti6Al4V has a UTS of 1222.69 ± 2.63 MPa, YS of 1063.87 ± 49.19 MPa, and elastic modulus of 106.38 ± 12.44 GPa. Microstructural analysis demonstrates a refined acicular martensitic structure, which improves toughness, while fractographic examination reveals both ductile and brittle fracture features, suggesting enhanced durability with the addition of Ta. Corrosion testing using potentiodynamic analysis and Electrochemical Impedance Spectroscopy (EIS) shows that Ti6Al4V-8Ta offers improved corrosion resistance. It exhibits a lower corrosion current density of 1.89 ± 0.38 μA/cm<sup>2</sup> compared to 7.23 ± 1.40 μA/cm<sup>2</sup> for Ti6Al4V, and a higher polarization resistance (Rp) of 24547.67 ± 12,157.40 Ω·cm<sup>2</sup> compared to 6762.36 ± 3796.68 Ω·cm<sup>2</sup> for Ti6Al4V. Additionally, the corrosion rate of Ti6Al4V-8Ta is 0.043 ± 0.023 mm/a, nearly half that of Ti6Al4V (0.093 ± 0.076 mm/a). Improved wettability is also observed, with Ti6Al4V-8Ta showing contact angles of 48.12 ± 4.36° (0° print angle) and 57.56 ± 3.03° (90° print angle), compared to 41.44 ± 1.18° and 47.61 ± 3.95° for Ti6Al4V. In conclusion, the Ti6Al4V-8Ta alloy developed using SLM achieves a favorable combination of mechanical performance and enhanced corrosion resistance. Although mechanical properties are slightly reduced, the significant improvements in corrosion resistance and hydrophobicity make Ti6Al4V-8Ta a promising candidate for long-term biomedical applications. This study highlights the potential of advanced manufacturing techniques to develop next-generation biomaterials that ensure safer and more durable implants.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 804-815"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325001270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the use of Selective Laser Melting (SLM) to enhance the mechanical and corrosion properties of titanium-tantalum (Ti6Al4V-8Ta) alloys for biomedical applications. The study addresses the limitations of the widely used Ti6Al4V alloy, such as potential aluminum and vanadium toxicity, by incorporating tantalum (Ta), which offers superior biocompatibility and corrosion resistance. Comprehensive characterization is performed using Scanning Electron Microscopy (SEM) to analyze the chemical composition and particle morphology, while particle size distribution is measured using a Mastersizer. Mechanical testing reveals that the Ti6Al4V-8Ta alloy exhibits slightly reduced mechanical properties compared to Ti6Al4V, with an ultimate tensile strength (UTS) of 1216.73 ± 3.20 MPa, yield strength (YS) of 1058.67 ± 24.49 MPa, and elastic modulus of 99.64 ± 5.52 GPa. In comparison, Ti6Al4V has a UTS of 1222.69 ± 2.63 MPa, YS of 1063.87 ± 49.19 MPa, and elastic modulus of 106.38 ± 12.44 GPa. Microstructural analysis demonstrates a refined acicular martensitic structure, which improves toughness, while fractographic examination reveals both ductile and brittle fracture features, suggesting enhanced durability with the addition of Ta. Corrosion testing using potentiodynamic analysis and Electrochemical Impedance Spectroscopy (EIS) shows that Ti6Al4V-8Ta offers improved corrosion resistance. It exhibits a lower corrosion current density of 1.89 ± 0.38 μA/cm2 compared to 7.23 ± 1.40 μA/cm2 for Ti6Al4V, and a higher polarization resistance (Rp) of 24547.67 ± 12,157.40 Ω·cm2 compared to 6762.36 ± 3796.68 Ω·cm2 for Ti6Al4V. Additionally, the corrosion rate of Ti6Al4V-8Ta is 0.043 ± 0.023 mm/a, nearly half that of Ti6Al4V (0.093 ± 0.076 mm/a). Improved wettability is also observed, with Ti6Al4V-8Ta showing contact angles of 48.12 ± 4.36° (0° print angle) and 57.56 ± 3.03° (90° print angle), compared to 41.44 ± 1.18° and 47.61 ± 3.95° for Ti6Al4V. In conclusion, the Ti6Al4V-8Ta alloy developed using SLM achieves a favorable combination of mechanical performance and enhanced corrosion resistance. Although mechanical properties are slightly reduced, the significant improvements in corrosion resistance and hydrophobicity make Ti6Al4V-8Ta a promising candidate for long-term biomedical applications. This study highlights the potential of advanced manufacturing techniques to develop next-generation biomaterials that ensure safer and more durable implants.
选择性激光熔化Ti6Al4V和Ti6Al4V- 8ta合金的力学和腐蚀性能比较研究
这项工作探索了使用选择性激光熔化(SLM)来增强生物医学应用的钛-钽(Ti6Al4V-8Ta)合金的机械和腐蚀性能。该研究解决了广泛使用的Ti6Al4V合金的局限性,例如潜在的铝和钒毒性,通过加入具有优越生物相容性和耐腐蚀性的钽(Ta)。使用扫描电子显微镜(SEM)进行综合表征,分析化学成分和颗粒形态,同时使用母粒机测量粒度分布。力学性能测试表明,Ti6Al4V- 8ta合金的极限抗拉强度(UTS)为1216.73 ± 3.20 MPa,屈服强度(YS)为1058.67 ± 24.49 MPa,弹性模量为99.64 ± 5.52 GPa,力学性能较Ti6Al4V合金略有降低。相比之下,Ti6Al4V的UTS为1222.69 ± 2.63 MPa, YS为1063.87 ± 49.19 MPa,弹性模量为106.38 ± 12.44 GPa。显微组织分析显示其为精细化的针状马氏体组织,提高了韧性,而断口分析显示其具有韧性和脆性断裂特征,表明添加Ta可以提高耐久性。利用电位分析和电化学阻抗谱(EIS)进行腐蚀测试表明,Ti6Al4V-8Ta具有更好的耐腐蚀性。它表现出较低的腐蚀电流密度1.89 ± 0.38μ比7.23 / cm2 ±1.40μ Ti6Al4V / cm2,和更高的极化电阻(Rp)的24547.67 ±12157 .40  6762.36Ω·cm2相比 ±3796.68  Ω·cm2 Ti6Al4V。Ti6Al4V- 8ta的腐蚀速率为0.043 ± 0.023 mm/a,是Ti6Al4V(0.093 ± 0.076 mm/a)的近一半。Ti6Al4V- 8ta的接触角分别为48.12 ± 4.36°(0°打印角)和57.56 ± 3.03°(90°打印角),而Ti6Al4V的接触角分别为41.44 ± 1.18°和47.61 ± 3.95°。综上所述,采用SLM法制备的Ti6Al4V-8Ta合金实现了力学性能和耐蚀性能的良好结合。虽然机械性能略有下降,但在耐腐蚀性和疏水性方面的显著改善使Ti6Al4V-8Ta成为长期生物医学应用的有希望的候选者。这项研究强调了先进制造技术的潜力,以开发下一代生物材料,确保更安全和更耐用的植入物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信