Walid Al Asad , Shubha Majumder , Karuna Nambi Gowri , Martin W. King , Xin Zhao
{"title":"Femtosecond laser micromachining of barbed sutures","authors":"Walid Al Asad , Shubha Majumder , Karuna Nambi Gowri , Martin W. King , Xin Zhao","doi":"10.1016/j.mfglet.2025.06.061","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the fabrication of barbed sutures of biodegradable polymers, such as P4HB and Cagut, using a femtosecond laser. Barbed sutures are in high demand for minimally invasive procedures, with the benefits of reducing the need for knots, enhancing wound closure stability and minimizing tissue trauma. Traditional approaches, such as mechanical cutting and longer-pulses lasers, result in imprecise cutting and extended thermal damage. In contrast, ultrashort pulse durations of femtosecond lasers enable high-precision cutting with the added benefits of minimal heat-affected zones. This research investigates the effects of key laser parameters, such as laser fluence, repetition rate, overlapping ratio and number of scans, on barb quality and identifies the optimal conditions for consistent, high-quality barbs with sharp tips and minimal thermal damage. Moreover, the threshold fluence values established here, for P4HB and Catgut, serve as a reference for future study. Results demonstrate that femtosecond laser technology can be a promising alternative to traditional barb fabrication techniques.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 517-523"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325000938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the fabrication of barbed sutures of biodegradable polymers, such as P4HB and Cagut, using a femtosecond laser. Barbed sutures are in high demand for minimally invasive procedures, with the benefits of reducing the need for knots, enhancing wound closure stability and minimizing tissue trauma. Traditional approaches, such as mechanical cutting and longer-pulses lasers, result in imprecise cutting and extended thermal damage. In contrast, ultrashort pulse durations of femtosecond lasers enable high-precision cutting with the added benefits of minimal heat-affected zones. This research investigates the effects of key laser parameters, such as laser fluence, repetition rate, overlapping ratio and number of scans, on barb quality and identifies the optimal conditions for consistent, high-quality barbs with sharp tips and minimal thermal damage. Moreover, the threshold fluence values established here, for P4HB and Catgut, serve as a reference for future study. Results demonstrate that femtosecond laser technology can be a promising alternative to traditional barb fabrication techniques.