Investigation of the nano-mechanical properties of pulse electric sintered TiAl-based high entropy alloys by CALPHAD-based simulation and experimental studies

IF 2 Q3 ENGINEERING, MANUFACTURING
Ufoma Silas Anamu , Odetola Peter Ifeolu , Peter Apata Olubambi
{"title":"Investigation of the nano-mechanical properties of pulse electric sintered TiAl-based high entropy alloys by CALPHAD-based simulation and experimental studies","authors":"Ufoma Silas Anamu ,&nbsp;Odetola Peter Ifeolu ,&nbsp;Peter Apata Olubambi","doi":"10.1016/j.mfglet.2025.06.020","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, four optimized septenary high entropy alloys (HEAs): Ti<sub>14.286</sub>Al<sub>14.286</sub>Cr<sub>14.286</sub>Nb<sub>14.286</sub>Ni<sub>14.286</sub>Cu<sub>14.286</sub>Co<sub>14.286</sub> (<strong><em>A</em></strong>), Ti<sub>20</sub>Al<sub>20</sub>Cr<sub>5</sub>Nb<sub>5</sub>Ni<sub>19</sub>Cu<sub>12</sub>Co<sub>19</sub> (<strong><em>B</em></strong>), Ti<sub>20</sub>Al<sub>20</sub>Cr<sub>5</sub>Nb<sub>5</sub>Ni<sub>18</sub>Cu<sub>14</sub>Co<sub>18</sub> (<strong><em>C</em></strong>) and Ti<sub>20</sub>Al<sub>20</sub>Cr<sub>5</sub>Nb<sub>5</sub>Ni<sub>17</sub>Cu<sub>16</sub>Co<sub>17</sub> (<strong><em>D</em></strong>) were designed theoretically by thermo-physical calculations and CALPHAD-based tool (ThermoCalc) to predict the phase diagram, stable phases formed, thermodynamic and mechanical properties of the HEAs prior to the experimentation process. The elemental feedstocks for the HEAs were mechanically alloyed at 10 hrs milling time in a wet environment before being consolidated via pulse electric sintering technique at a sintering temperature of 900 °C, heating rate of 100 °C/min, pressure of 50 MPa, and a dwelling time of 10 min. Nanoindentation testing was conducted to evaluate the nano-mechanical characteristics of the fabricated HEAs. 5 stable phases were identified- BCC_B2, FCC_L1<sub>2</sub>, Sigma, Heusler and C15_Laves at varying fractions across all four HEAs. Simulation from the Property Model Calculator (PMC) module of the ThermoCalc software indicated intrinsic hardness values of 126.116 HV, 144.096 HV, 138.283 HV and 132.972 HV for alloys <strong><em>A</em></strong>, <strong><em>B</em></strong>, <strong><em>C</em></strong> and <strong><em>D</em></strong> respectively. Under 100 mN load, with a loading and unloading rate of 600 mN/min and a holding period of 2 secs, the nanoindentation results revealed that alloy <strong><em>B</em></strong> exhibited the highest nanohardness (15.185 GPa), the least penetration depth (427.822 nm) and highest elastic modulus (246.92 GPa) among the properties. Notably, increasing the composition of Cu at the expense of Ni and Co led to a BCC-FCC phase transformation, resulting in a significant decrease in nanohardness from alloy <strong><em>B</em></strong> to <strong><em>D</em></strong>. A comparative analysis of the hardness results simulated from the PMC module and the experimental nano-hardness results obtained exhibited a consistent trend, confirming the reliability of the predictive model.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"44 ","pages":"Pages 157-166"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221384632500046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, four optimized septenary high entropy alloys (HEAs): Ti14.286Al14.286Cr14.286Nb14.286Ni14.286Cu14.286Co14.286 (A), Ti20Al20Cr5Nb5Ni19Cu12Co19 (B), Ti20Al20Cr5Nb5Ni18Cu14Co18 (C) and Ti20Al20Cr5Nb5Ni17Cu16Co17 (D) were designed theoretically by thermo-physical calculations and CALPHAD-based tool (ThermoCalc) to predict the phase diagram, stable phases formed, thermodynamic and mechanical properties of the HEAs prior to the experimentation process. The elemental feedstocks for the HEAs were mechanically alloyed at 10 hrs milling time in a wet environment before being consolidated via pulse electric sintering technique at a sintering temperature of 900 °C, heating rate of 100 °C/min, pressure of 50 MPa, and a dwelling time of 10 min. Nanoindentation testing was conducted to evaluate the nano-mechanical characteristics of the fabricated HEAs. 5 stable phases were identified- BCC_B2, FCC_L12, Sigma, Heusler and C15_Laves at varying fractions across all four HEAs. Simulation from the Property Model Calculator (PMC) module of the ThermoCalc software indicated intrinsic hardness values of 126.116 HV, 144.096 HV, 138.283 HV and 132.972 HV for alloys A, B, C and D respectively. Under 100 mN load, with a loading and unloading rate of 600 mN/min and a holding period of 2 secs, the nanoindentation results revealed that alloy B exhibited the highest nanohardness (15.185 GPa), the least penetration depth (427.822 nm) and highest elastic modulus (246.92 GPa) among the properties. Notably, increasing the composition of Cu at the expense of Ni and Co led to a BCC-FCC phase transformation, resulting in a significant decrease in nanohardness from alloy B to D. A comparative analysis of the hardness results simulated from the PMC module and the experimental nano-hardness results obtained exhibited a consistent trend, confirming the reliability of the predictive model.
基于calphad的脉冲电烧结tial基高熵合金纳米力学性能模拟与实验研究
本研究通过热物理计算和基于calphad的工具(ThermoCalc),从理论上设计了ti14.286al14.286 cr14.286 cr14.286 nb14.286 ni14.286 cu14.286 co14.286 (A)、Ti20Al20Cr5Nb5Ni19Cu12Co19 (B)、Ti20Al20Cr5Nb5Ni18Cu14Co18 (C)和Ti20Al20Cr5Nb5Ni17Cu16Co17 (D)四种优化的七级高熵合金(HEAs),预测了实验前HEAs的相图、形成的稳定相、热力学和力学性能。HEAs的元素原料在湿环境下进行10小时的机械合金化,然后在烧结温度900 °C,加热速率100 °C/min,压力50 MPa,停留时间10 min的条件下通过脉冲电烧结技术进行固结。通过纳米压痕测试来评价制备的HEAs的纳米力学特性。在4个HEAs中,分别鉴定出BCC_B2、FCC_L12、Sigma、Heusler和C15_Laves 5个不同分数的稳定相。通过ThermoCalc软件的属性模型计算器(Property Model Calculator, PMC)模块进行仿真,得出合金A、B、C和D的固有硬度值分别为126.116 HV、144.096 HV、138.283 HV和132.972 HV。在100 mN载荷下,当加载卸载速率为600 mN/min,保温时间为2秒时,纳米压痕结果表明,B合金的纳米硬度最高(15.185 GPa),穿透深度最小(427.822 nm),弹性模量最高(246.92 GPa)。值得注意的是,以Ni和Co为代价增加Cu的成分导致BCC-FCC相变,导致合金B到d的纳米硬度显著降低。PMC模块模拟的硬度结果与实验得到的纳米硬度结果对比分析显示出一致的趋势,证实了预测模型的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信