Aloe vera-mediated SrFe2O4 nanoparticles: structural, optical, electrical and electrochemical properties for energy storage applications

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohd Rehan Ansari , Prachi Jain , Sagar Sen , O.P. Thakur , Koteswara Rao Peta
{"title":"Aloe vera-mediated SrFe2O4 nanoparticles: structural, optical, electrical and electrochemical properties for energy storage applications","authors":"Mohd Rehan Ansari ,&nbsp;Prachi Jain ,&nbsp;Sagar Sen ,&nbsp;O.P. Thakur ,&nbsp;Koteswara Rao Peta","doi":"10.1016/j.mseb.2025.118748","DOIUrl":null,"url":null,"abstract":"<div><div>Spinel-structured strontium ferrite (SrFe<sub>2</sub>O<sub>4</sub>) nanoparticles were successfully synthesized using aloe vera gel extract for solid state symmetrical supercapacitor applications. The successful formation of SrFe<sub>2</sub>O<sub>4</sub> (SFO) was confirmed through various characterization techniques such as TGA, HR-XRD, XPS, FTIR, FESEM, EDAX and HR-TEM. Dielectric constant, permittivity, permeability and AC/DC conductivity were studied across varying frequencies and temperatures, indicating good electrical properties of SFO. The high specific surface area of SFO provides more active sites for electrochemical reactions to occur and hence provide high specific capacitance. The specific capacitance of 121.22 F/g obtained from GCD curves in 3-electrode system with 92.59 % of capacitance retention over 1000 charge–discharge cycles. Further, the electrochemical performance was tested for symmetrical supercapacitor and result shows the specific capacitance of 192.34 F/g and the capacitance retention of 72.73 % over 3000 cycles. These results suggest that SrFe<sub>2</sub>O<sub>4</sub> is a promising electrode material for next generation supercapacitor applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"323 ","pages":"Article 118748"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072500772X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel-structured strontium ferrite (SrFe2O4) nanoparticles were successfully synthesized using aloe vera gel extract for solid state symmetrical supercapacitor applications. The successful formation of SrFe2O4 (SFO) was confirmed through various characterization techniques such as TGA, HR-XRD, XPS, FTIR, FESEM, EDAX and HR-TEM. Dielectric constant, permittivity, permeability and AC/DC conductivity were studied across varying frequencies and temperatures, indicating good electrical properties of SFO. The high specific surface area of SFO provides more active sites for electrochemical reactions to occur and hence provide high specific capacitance. The specific capacitance of 121.22 F/g obtained from GCD curves in 3-electrode system with 92.59 % of capacitance retention over 1000 charge–discharge cycles. Further, the electrochemical performance was tested for symmetrical supercapacitor and result shows the specific capacitance of 192.34 F/g and the capacitance retention of 72.73 % over 3000 cycles. These results suggest that SrFe2O4 is a promising electrode material for next generation supercapacitor applications.
芦荟介导的SrFe2O4纳米颗粒:用于储能应用的结构、光学、电学和电化学性能
利用芦荟凝胶提取物成功合成了尖晶石结构的锶铁氧体(SrFe2O4)纳米颗粒,用于固态对称超级电容器。通过TGA、HR-XRD、XPS、FTIR、FESEM、EDAX、HR-TEM等表征手段证实了SrFe2O4 (SFO)的成功生成。研究了SFO在不同频率和温度下的介电常数、介电常数、磁导率和AC/DC电导率,表明SFO具有良好的电学性能。SFO的高比表面积为电化学反应的发生提供了更多的活性位点,从而提供了高比电容。在三电极体系中,通过GCD曲线得到的比电容为121.22 F/g,在1000次充放电循环中电容保持率为92.59%。进一步测试了对称型超级电容器的电化学性能,结果表明,在3000次循环中,比电容为192.34 F/g,电容保持率为72.73%。这些结果表明,SrFe2O4是一种很有前途的下一代超级电容器电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信