Oxygen vacancy-engineered Ti₃C₂Tₓ MXenes for photocatalytic degradation of pharmaceutical residues in aqueous systems: Molecular mechanisms and future directions

R. Reshma , C. James , B.S. Arun Sasi , Sarah Susan Jolly , A.R. Twinkle
{"title":"Oxygen vacancy-engineered Ti₃C₂Tₓ MXenes for photocatalytic degradation of pharmaceutical residues in aqueous systems: Molecular mechanisms and future directions","authors":"R. Reshma ,&nbsp;C. James ,&nbsp;B.S. Arun Sasi ,&nbsp;Sarah Susan Jolly ,&nbsp;A.R. Twinkle","doi":"10.1016/j.nxmate.2025.101127","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing prevalence of pharmaceutical contaminants in aquatic environments poses a critical challenge to water safety and ecological health. Among emerging remediation strategies, Ti₃C₂Tₓ MXenes—two-dimensional transition metal carbides—have garnered attention for their unique tunable surface chemistry and photocatalytic activity. This review provides an in-depth analysis of the role of oxygen vacancy engineering in enhancing the photocatalytic degradation of pharmaceuticals. We explore synthetic strategies for inducing oxygen vacancies, their impact on band structure modulation, charge separation, and reactive oxygen species generation, and how these vacancies facilitate pollutant-specific interactions at the molecular level. Comparative analyses with conventional photocatalysts underscore the superior reactivity, selectivity, and scalability potential of Ti₃C₂Tₓ-based systems. Mechanistic insights, drawn from both experimental studies and density functional theory, reveal critical pathways for pollutant degradation. The review concludes with a roadmap outlining future challenges and opportunities, highlighting the promise of AI-guided design and hybrid material architectures in enabling sustainable, precision-targeted water treatment.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 101127"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825006458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing prevalence of pharmaceutical contaminants in aquatic environments poses a critical challenge to water safety and ecological health. Among emerging remediation strategies, Ti₃C₂Tₓ MXenes—two-dimensional transition metal carbides—have garnered attention for their unique tunable surface chemistry and photocatalytic activity. This review provides an in-depth analysis of the role of oxygen vacancy engineering in enhancing the photocatalytic degradation of pharmaceuticals. We explore synthetic strategies for inducing oxygen vacancies, their impact on band structure modulation, charge separation, and reactive oxygen species generation, and how these vacancies facilitate pollutant-specific interactions at the molecular level. Comparative analyses with conventional photocatalysts underscore the superior reactivity, selectivity, and scalability potential of Ti₃C₂Tₓ-based systems. Mechanistic insights, drawn from both experimental studies and density functional theory, reveal critical pathways for pollutant degradation. The review concludes with a roadmap outlining future challenges and opportunities, highlighting the promise of AI-guided design and hybrid material architectures in enabling sustainable, precision-targeted water treatment.
氧空位工程Ti₃C₂TₓMXenes光催化降解水体系中药物残留物:分子机制和未来方向
水生环境中日益普遍的药物污染物对水安全和生态健康构成了重大挑战。在新兴的修复策略中,Ti₃C₂Tₓmxene -二维过渡金属碳化物因其独特的可调表面化学和光催化活性而受到关注。本文综述了氧空位工程在提高药物光催化降解中的作用。我们探索了诱导氧空位的合成策略,它们对能带结构调制、电荷分离和活性氧生成的影响,以及这些空位如何在分子水平上促进污染物特异性相互作用。与传统光催化剂的比较分析强调了Ti₃C₂Tₓ基体系优越的反应性、选择性和可扩展性潜力。从实验研究和密度泛函理论中得出的机制见解揭示了污染物降解的关键途径。该评估总结了未来挑战和机遇的路线图,强调了人工智能指导设计和混合材料架构在实现可持续、精确目标水处理方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信