Hierarchical Mo/HTNU-9 boosts methane aromatization with mitigated carbon deposition

IF 7.7 2区 工程技术 Q1 CHEMISTRY, APPLIED
Jing Hu, Xiaodong Chen, Chunxue Yang, Jingjing Tian, Xin Kang, Xiaohui Wang, Jinglin Liu
{"title":"Hierarchical Mo/HTNU-9 boosts methane aromatization with mitigated carbon deposition","authors":"Jing Hu,&nbsp;Xiaodong Chen,&nbsp;Chunxue Yang,&nbsp;Jingjing Tian,&nbsp;Xin Kang,&nbsp;Xiaohui Wang,&nbsp;Jinglin Liu","doi":"10.1016/j.fuproc.2025.108323","DOIUrl":null,"url":null,"abstract":"<div><div>Methane dehydroaromatization (MDA) offers a promising route for converting methane into aromatics, yet rapid catalyst deactivation via coking remains a critical barrier. This study addresses this challenge through TPAOH-assisted hierarchical pore engineering of HTNU-9 zeolite. Controlled desilication (0.25 mol/L TPAOH, 24 h) generates micro-mesoporous Mo/HTNU-9-24 while retaining microporous integrity, achieving a 22 % increase in methane conversion (14.7 % vs. 11.4 % for pristine Mo/HTNU-9) at 700 °C. The hierarchical architecture enhances mass transfer and Mo dispersion via synergistic effects. Silanol-rich mesopore surfaces and mild alkalinity stabilize Mo species, selective removal of strong acid sites coupled with spatial confinement of mesopores mitigate coke accumulation. The optimized catalyst exhibits prolonged stability due to restricted Mo agglomeration and efficient carbon precursor diffusion. These findings establish a dual strategy (pore topology control and acid site modulation) to synchronize active center dynamics and coke resistance, advancing the rational design of hierarchical zeolites for industrial MDA applications.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108323"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838202500147X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Methane dehydroaromatization (MDA) offers a promising route for converting methane into aromatics, yet rapid catalyst deactivation via coking remains a critical barrier. This study addresses this challenge through TPAOH-assisted hierarchical pore engineering of HTNU-9 zeolite. Controlled desilication (0.25 mol/L TPAOH, 24 h) generates micro-mesoporous Mo/HTNU-9-24 while retaining microporous integrity, achieving a 22 % increase in methane conversion (14.7 % vs. 11.4 % for pristine Mo/HTNU-9) at 700 °C. The hierarchical architecture enhances mass transfer and Mo dispersion via synergistic effects. Silanol-rich mesopore surfaces and mild alkalinity stabilize Mo species, selective removal of strong acid sites coupled with spatial confinement of mesopores mitigate coke accumulation. The optimized catalyst exhibits prolonged stability due to restricted Mo agglomeration and efficient carbon precursor diffusion. These findings establish a dual strategy (pore topology control and acid site modulation) to synchronize active center dynamics and coke resistance, advancing the rational design of hierarchical zeolites for industrial MDA applications.

Abstract Image

分层Mo/HTNU-9促进甲烷芳构化,减轻碳沉积
甲烷脱氢芳化(MDA)为甲烷转化为芳烃提供了一条很有前途的途径,但通过焦化使催化剂快速失活仍然是一个关键障碍。本研究通过tpaoh辅助HTNU-9沸石的分层孔隙工程来解决这一挑战。控制脱硅(0.25 mol/L TPAOH, 24 h)生成微介孔Mo/HTNU-9-24,同时保持微孔完整性,在700℃下甲烷转化率提高22%(14.7%比原始Mo/HTNU-9的11.4%)。分层结构通过协同效应增强了传质和钼的分散。富硅醇的介孔表面和温和的碱度稳定了钼,选择性去除强酸位点加上介孔的空间限制减轻了焦炭的积累。优化后的催化剂表现出较长的稳定性,因为它限制了钼的团聚和有效的碳前驱体扩散。这些发现建立了一种双重策略(孔隙拓扑控制和酸位调制)来同步活性中心动力学和抗焦性,促进了分层沸石的合理设计,用于工业MDA应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信