Hongyi Chen , Rui Cheng , Se Hun Chung , Arsalan Marghoub , Hui Zhong , Guohao Fang , Stavroula Balabani , Lucy Di-Silvio , Jie Huang
{"title":"Direct ink writing of bioactive PCL/laponite bone Implants: Engineering the interplay of design, process, structure, and function","authors":"Hongyi Chen , Rui Cheng , Se Hun Chung , Arsalan Marghoub , Hui Zhong , Guohao Fang , Stavroula Balabani , Lucy Di-Silvio , Jie Huang","doi":"10.1016/j.bmt.2025.100101","DOIUrl":null,"url":null,"abstract":"<div><div>Direct ink writing (DIW) is a room-temperature extrusion-based 3D printing technique that enables the fabrication of dense, customizable implants from viscous inks with precise spatial control. In this study, we present an engineering design framework for DIW-printed PCL/Laponite composites by tuning ink formulations and printing orientations to systematically investigate and control the complex interplay between shape fidelity, mechanical performance, and cellular response. Our findings show that printing at 0° orientation enhances filament-aligned surface topographies, which guide osteoblast attachment and significantly promote cell proliferation and mineralization. In contrast to previous studies using fused deposition modeling (FDM), we observe that printing at 90° orientation (perpendicular to the tensile load direction) results in higher mechanical performance due to improved filament bonding. Increasing Laponite loading (up to 30 %) improves shape retention by increasing ink viscosity, raises Young's modulus by up to 110 %, and enhances surface bioactivity by introducing hydrophilic and bioactive cues. This study provides a tunable strategy for engineering bioactive and surface-active implants for the clinical need for non-load-bearing orthopaedic applications where structural integrity, surface-mediated osteointegration, and customized geometry are clinically essential.</div></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"11 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X25000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Direct ink writing (DIW) is a room-temperature extrusion-based 3D printing technique that enables the fabrication of dense, customizable implants from viscous inks with precise spatial control. In this study, we present an engineering design framework for DIW-printed PCL/Laponite composites by tuning ink formulations and printing orientations to systematically investigate and control the complex interplay between shape fidelity, mechanical performance, and cellular response. Our findings show that printing at 0° orientation enhances filament-aligned surface topographies, which guide osteoblast attachment and significantly promote cell proliferation and mineralization. In contrast to previous studies using fused deposition modeling (FDM), we observe that printing at 90° orientation (perpendicular to the tensile load direction) results in higher mechanical performance due to improved filament bonding. Increasing Laponite loading (up to 30 %) improves shape retention by increasing ink viscosity, raises Young's modulus by up to 110 %, and enhances surface bioactivity by introducing hydrophilic and bioactive cues. This study provides a tunable strategy for engineering bioactive and surface-active implants for the clinical need for non-load-bearing orthopaedic applications where structural integrity, surface-mediated osteointegration, and customized geometry are clinically essential.