A Crank–Nicolson ultra-weak discontinuous Galerkin method for solving a unsteady singularly perturbed problem with a shift in space

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Yige Liao , Li-Bin Liu , Xianbing Luo , Guangqing Long
{"title":"A Crank–Nicolson ultra-weak discontinuous Galerkin method for solving a unsteady singularly perturbed problem with a shift in space","authors":"Yige Liao ,&nbsp;Li-Bin Liu ,&nbsp;Xianbing Luo ,&nbsp;Guangqing Long","doi":"10.1016/j.aml.2025.109736","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a unsteady singularly perturbed problem (SPP) with a shift in space is studied. The problem is discretized by a ultra-weak discontinuous Galerkin (UWDG) method in space on the Bakhvalov-type (B-type) mesh and by Crank–Nicolson (CN) scheme in time. Through carefully designing numerical fluxes and penalty terms, we rigorously establish the coercivity of the bilinear form associated with the UWDG scheme. Furthermore, based on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-projection and careful error estimate for Ritz projection, we derive optimal-order convergence estimates. Numerical experiments verify the effectiveness of the method.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109736"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002861","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a unsteady singularly perturbed problem (SPP) with a shift in space is studied. The problem is discretized by a ultra-weak discontinuous Galerkin (UWDG) method in space on the Bakhvalov-type (B-type) mesh and by Crank–Nicolson (CN) scheme in time. Through carefully designing numerical fluxes and penalty terms, we rigorously establish the coercivity of the bilinear form associated with the UWDG scheme. Furthermore, based on the L2-projection and careful error estimate for Ritz projection, we derive optimal-order convergence estimates. Numerical experiments verify the effectiveness of the method.
求解空间位移非定常奇摄动问题的Crank-Nicolson超弱不连续Galerkin方法
本文研究了一类具有空间位移的非定常奇摄动问题。在空间上采用bakhvalov型(b型)网格上的超弱不连续Galerkin (UWDG)方法进行离散,在时间上采用Crank-Nicolson (CN)格式进行离散。通过精心设计数值通量和惩罚项,我们严格地建立了与UWDG格式相关的双线性形式的矫顽力。此外,基于l2 -投影和Ritz投影的谨慎误差估计,我们导出了最优阶收敛估计。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信